Phân tích thành nhân tử ( với x > hoặc bằng 0 )
\(x\sqrt{x}-1\)
Phân tích đa thức thành nhân tử ( với x > hoặc bằng 0 )
2+\(\sqrt{3}+\sqrt{6}+\sqrt{8}\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=2+\sqrt{3}+\sqrt{6}+2\sqrt{2}\)
\(=2+\sqrt{3}+\sqrt{2}\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right)\left(\sqrt{2}+1\right)\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=\left(\sqrt{2}+1\right)\left(2+\sqrt{3}\right)\)
cách phân tích đa thức có dạng ax + b\(\sqrt{x}\) + c thành nhân tử với x > 0
từ đó phân tích đa thức x +8 \(\sqrt{x}\) + 7 thành nhân tử với x > 0
Phân tích đa thức thành nhân tử (với x > hoặc = 0)
a) x + \(\sqrt{x}\)
b) x - 4\(\sqrt{x}\)+ 3
a ) \(x+\sqrt{x}=\left(\sqrt{x}\right)^2+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\)
b ) \(x-4\sqrt{x}+3=\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2-1=\left(\sqrt{x}-2\right)^2-1\)
\(=\left(\sqrt{x}-2\right)^2-1^2=\left(\sqrt{x}-2+1\right)\left(\sqrt{x}-2-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)\)
\(x+\sqrt{x}=\left(\sqrt{x}\right)^2+\sqrt{x}=\sqrt{x}.\left(\sqrt{x}+1\right)\)
\(x-4\sqrt{x}+3=\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2\right]-1^2=\left(\sqrt{x}-2\right)^2-1^2\)
\(=\left(\sqrt{x}-2-1\right)\left(\sqrt{x}-2+1\right)\)
\(=\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)\)
a)\(x+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\)
b)\(x-4\sqrt{x}+3\)
\(=\left(\sqrt{x}\right)^2-2.2\sqrt{x}+2^2-1\)
\(=\left(\sqrt{x}-2\right)^2-1\)
\(=\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)\)
Phân tích thành nhân tử: x * sqrt(x) + 2x + sqrt(x) +2(với x>0)
\(x\sqrt{x}+2x+\sqrt{x}+2\left(x>0\right)\)
\(=\left(x\sqrt{x}+\sqrt{x}\right)+\left(2x+2\right)\)
\(=\sqrt{x}\left(x+1\right)+2\left(x+1\right)\)
\(=\left(\sqrt{x}+2\right)\left(x+1\right)\)
phân tích thành nhân tử với x>=0
a, x-1
b, x-\(\sqrt{x}\)-2
c, x\(\sqrt{x}\)+1
a) \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
b) \(x-\sqrt{x}-2=\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+1\right)\)
c) \(x\sqrt{x}+1=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
\(a.x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\\ b.x-\sqrt{x}-2=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\\ c.x\sqrt{x}+1=\sqrt{x^3}+\sqrt{1^3}=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
Tham Khảo:
a) x−1=(√x−1)(√x+1)x−1=(x−1)(x+1)
b) x−√x−2=(√x−2)⋅(√x+1)x−x−2=(x−2)⋅(x+1)
c) x√x+1=(√x+1)(x−√x+1
Bài 1: Trong tập hợp R, với x lớn hơn hoặc bằng 0, với y lớn hơn hoặc bằng 0, Hãy phân tích đa thức sau thành nhân tử:
a) \(x+2\sqrt{x}\), \(4x-8\sqrt{x}\), \(xy-2\sqrt{xy}\)
b) x - y , 4x - 9y , 1- xy
c) \(x-y+2\sqrt{x+1}\), \(x+1-2\sqrt{y-y}\)
d) \(x+5\sqrt{x-6}\), \(3x-8\sqrt{x+}5\), \(x+2\sqrt{x-3}\)
phân tích đa thức thành nhân tử
\(x+2\sqrt{x-1}\) (với x≥1)
\(x-4\sqrt{x-2}+2\) ( với x ≥2)
\(x+2\sqrt{x-1}=\left(x-1\right)+2\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(x-2\right)-4\sqrt{x-2}+4=\left(\sqrt{x-2}-2\right)^2\)
\(x+2\sqrt{x-1}=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(\sqrt{x-2}+4\right)^2\)
Phân tích đa thức thành nhân tử
a. 7-3a (a lớn hơn hoặc =0)
b.\(14x^2-11\)
c.3x-\(6\sqrt{x}\)-6
d.\(x\sqrt{x}-3\sqrt{x}-2\)
Lời giải:
a.
$7-3a=(\sqrt{7}-\sqrt{3a})(\sqrt{7}+\sqrt{3a})$
b.
$14x^2-11=(\sqrt{14}x-\sqrt{11})(\sqrt{14}x+\sqrt{11})$
c.
$3x-6\sqrt{x}-6=3(x-2\sqrt{x}-2)$
$=3[(\sqrt{x}-1)^2-3]$
$=3(\sqrt{x}-1-\sqrt{3})(\sqrt{x}-1+\sqrt{3})$
d.
$x\sqrt{x}-3\sqrt{x}-2=x\sqrt{x}-2x+2x-4\sqrt{x}+\sqrt{x}-2$
$=x(\sqrt{x}-2)+2\sqrt{x}(\sqrt{x}-2)+(\sqrt{x}-2)$
$=(\sqrt{x}-2)(x+2\sqrt{x}+1)$
$=(\sqrt{x}-2)(\sqrt{x}+1)^2$
phân tích đa thức thành nhân tử
\(x\cdot\sqrt{x}-3x+4\cdot\sqrt{x}-2\) với \(x>0\)