Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Anh
Xem chi tiết
nguyen ngoc tri
Xem chi tiết
luong nguyen phat
Xem chi tiết
Đỗ Đạt
10 tháng 8 2016 lúc 13:33

diện tích hình thang = (đáy lớn + đáy bé)chiều cao : 2 = (2+4)x2:2= 6 cm^2

Đỗ Đạt
10 tháng 8 2016 lúc 13:36

\(\frac{1}{2}\)x2(2+4)=6(cm^2(

KUDO SHINICHI
1 tháng 9 2016 lúc 13:01

Lấy K là trung điểm của CD , I là trung điểm của DN

Chứng minh tứ giác ABKD là hình vuông

=> ˆADB=45o(1)ADB^=45o(1)

Chứng minh △ DBC△ DBC là tam giác vuông cân =>ˆDBC=90o(2)=>DBC^=90o(2)

Từ (1) và (2) ta được ˆABC=135oABC^=135o

Ta có △ DBN△ DBN vuông tại B có BI là trung tuyến nên BI =DI =IN (3)

lại có △ DMN△ DMN vuông tại M có MI là trung tuyến nên MI= DI =IN(4)

Kết hợp (3)(4) ta có +△ MIB+△ MIB cân tại I nên ˆIMB=ˆIBMIMB^=IBM^(5)

+△ OIN+△ OINcân tại I nên ˆIBN=ˆBNI(6)IBN^=BNI^(6)

Từ (5) (6) ta được : ˆIBM+ˆIBN+ˆIMB+ˆBNI=270oIBM^+IBN^+IMB^+BNI^=270o

=>ˆMIN=360o−270o=90o=>MIN^=360o−270o=90o

=>MI⊥ DN=>MI⊥ DN

Tam giác vuông DMN có MI vừa là tt vừa là đường cao nên là tam giác vuông cân

Nguyễn Thị Ngọc Lan
Xem chi tiết
Giúp mik với mấy bn ơi C...
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 5 2018 lúc 18:23

Đáp án cần chọn là: D

Từ B kẻ BH vuông góc với CD.

Tứ giác ABHD là hình thang có hai cạnh bên AD // BH nên AD = BH, AB = DH.

Mặt khác, AB = AD = 2cm nên suy ra BH = DH = 2cm.

Do đó: HC = DC – HD = 4 – 2 = 2cm.

Tam giác BHC có BH = HC = 2cm nên tam giác BHC cân đỉnh H.

Lại có B H C ^ = 90 °  (do BH CD) nên tam giác BHC vuông cân tại H.

Do đó  B C H ^ = 180 ° - B H C ^ ÷ 2 = 180 ° - 90 ° ÷ 2 = 45 °

Xét hình thang ABCD có:

A B C ^ = 360 ° - A ^ + D ^ + C ^ = 360 ° - 90 ° + 90 ° + 45 ° = 135 °

Vậy A B C ^ = 135 ° .

Ngân Nguyễn Khánh
Xem chi tiết
Cô Hoàng Huyền
21 tháng 5 2018 lúc 11:25

Xét tam giác ABD và tam giác BDC có:

\(\widehat{BAD}=\widehat{DBC}=90^o\)

\(\widehat{ABD}=\widehat{BDC}\)   (Cùng phụ với góc \(\widehat{ADC}\)  )

\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow BD^2=\frac{AB}{DC}\)

Xét tam giác vuông ABD, áp dụng định lý Pi-ta-go ta có:

      \(DB^2=AB^2+AD^2=2^2+4^2=20\)

Suy ra \(2=\frac{20}{DC}\Rightarrow DC=10cm\)

Xét tam giác vuông BDC, áp dụng định lý Pi-ta-go ta có:

  \(BC^2=DC^2-BD^2=10^2-20=80\Rightarrow BC=\sqrt{80}\left(cm\right)\)

Vậy chu vi hình thang vuông bằng:    2 + 4 + 10 + \(\sqrt{80}=14+\sqrt{80}\left(cm\right)\)

Diện tích hình thang bằng: \(\frac{\left(2+10\right).4}{2}=24\left(cm^2\right)\)

Bich Ngoc Nguyen thi
21 tháng 5 2018 lúc 12:16

20cm2

Thảo Bùi
Xem chi tiết
Tomoyo
15 tháng 6 2017 lúc 19:41

3)áp dụng pytago để tính

Angels of Death
Xem chi tiết
Giang シ)
11 tháng 9 2021 lúc 21:00

Kẻ BH ⊥ CD

Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có  ∠ A =  ∠ D = 90 0  )

Suy ra: BH // AD

Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD

AB = AD = 2cm (gt)

⇒ BH = HD = 2cm

CH = CD – HD = 4 – 2 = 2 (cm)

Suy ra: ∆ BHC vuông cân tại H

Hình đây ạ !!:

undefined

Khách vãng lai đã xóa