Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
manh
Xem chi tiết
Akai Haruma
15 tháng 10 2023 lúc 17:54

Lời giải:

a. ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}=4+3.\sqrt{\frac{1}{9}}.\sqrt{x-5}$

$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}=4+\sqrt{x-5}$

$\Leftrightarrow 2\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=2$

$\Leftrightarrow x-5=4$

$\Leftrightarrow x=9$ (tm)

b. Sửa đoạn 4x-45 thành 4x-20.

ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{4}.\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}+\frac{1}{3}\sqrt{x-5}-\frac{2}{3}\sqrt{x-5}=4$

$\Leftrightarrow \frac{5}{3}\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=\frac{12}{5}$

$\Leftrightarrow x-5=\frac{144}{25}=5,76$

$\Leftrightarrow x=10,76$ (tm)

Khánh An Ngô
Xem chi tiết
Võ Việt Hoàng
22 tháng 7 2023 lúc 8:47

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

Võ Việt Hoàng
22 tháng 7 2023 lúc 9:06

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

Mưa Đang Đi Chơi
Xem chi tiết
HT.Phong (9A5)
4 tháng 8 2023 lúc 11:03

\(\sqrt{4u-20}+3\sqrt{\dfrac{u-5}{9}}-\dfrac{1}{3}\sqrt{9u-45}=4\) (ĐK: \(u\ge5\))

\(\Leftrightarrow2\sqrt{u-5}+3\cdot\dfrac{\sqrt{u-5}}{3}-\dfrac{1}{3}\cdot3\sqrt{u-5}=4\)

\(\Leftrightarrow2\sqrt{u-5}+\sqrt{u-5}-\sqrt{u-5}=4\)

\(\Leftrightarrow2\sqrt{u-5}=4\)

\(\Leftrightarrow\sqrt{u-5}=2\)

\(\Leftrightarrow u-5=4\)

\(\Leftrightarrow u=9\) (tm)

chang
Xem chi tiết
Hồng Phúc
29 tháng 8 2021 lúc 14:37

9.

\(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\)

\(=2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}\)

\(=-\sqrt{5}\)

Hồng Phúc
29 tháng 8 2021 lúc 14:39

10.

\(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\)

\(=5\sqrt{3}-\sqrt{5+\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2+\dfrac{2}{3}}+6\sqrt{3}\)

\(=11\sqrt{3}-\sqrt{\dfrac{16}{3}}+\dfrac{9}{2}\sqrt{\dfrac{8}{3}}\)

\(=11\sqrt{3}-\dfrac{4\sqrt{3}}{3}+3\sqrt{6}\)

\(=\dfrac{29\sqrt{3}}{3}+3\sqrt{6}\)

Nguyễn Hoàng Minh
29 tháng 8 2021 lúc 14:39

\(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\\ =2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}=\sqrt{5}\)

\(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\\ =5\sqrt{3}-\dfrac{4\sqrt{3}}{3}+3\sqrt{6}+6\sqrt{3}\\ =\dfrac{15\sqrt{3}-4\sqrt{3}+6\sqrt{6}+18\sqrt{3}}{3}\\ =\dfrac{29\sqrt{3}+6\sqrt{6}}{3}\)

huy tạ
Xem chi tiết
nthv_.
14 tháng 11 2021 lúc 19:53

\(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(2\sqrt{x-5}=4\)

\(\sqrt{x-5}=2\)

\(\left\{{}\begin{matrix}2>0\left(luondung\right)\\x-5=4\end{matrix}\right.\)\(\Rightarrow x=9\left(tm\right)\)

Momozono Hisaki
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 11 2021 lúc 18:42

a) \(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\Leftrightarrow\left|x-3\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=0\end{matrix}\right.\)

b) ĐKXĐ: \(x\ge-5\)

\(pt\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4\)

\(\Leftrightarrow2\sqrt{x+5}=4\Leftrightarrow\sqrt{x+5}=2\)

\(\Leftrightarrow x+5=4\Leftrightarrow x=-1\left(tm\right)\)

Phương Nhi Nguyễn
Xem chi tiết
nthv_.
15 tháng 10 2021 lúc 23:45
phamthiminhanh
Xem chi tiết
Yeutoanhoc
26 tháng 6 2021 lúc 16:14

`a)sqrt{x^2-2x+1}=2`

`<=>sqrt{(x-1)^2}=2`

`<=>|x-1|=2`

`**x-1=2<=>x=3`

`**x-1=-1<=>x=-1`.

Vậy `S={3,-1}`

`b)sqrt{x^2-1}=x`

Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)

`<=>x>=1`

`pt<=>x^2-1=x^2`

`<=>-1=0` vô lý

Vậy pt vô nghiệm

`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`

`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`

`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`

`<=>2sqrt{x-5}=4`

`<=>sqrt{x-5}=2`

`<=>x-5=4`

`<=>x=9(tmđk)`

Vậy `S={9}.`

`d)x-5sqrt{x-2}=-2(x>=2)`

`<=>x-2-5sqrt{x-2}+4=0`

Đặt `a=sqrt{x-2}`

`pt<=>a^2-5a+4=0`

`<=>a_1=1,a_2=4`

`<=>sqrt{x-2}=1,sqrt{x-2}=4`

`<=>x_1=3,x_2=18`,

`e)2x-3sqrt{2x-1}-5=0`

`<=>2x-1-3sqrt{2x-1}-4=0`

Đặt `a=sqrt{2x-1}(a>=0)`

`pt<=>a^2-3a-4=0`

`a-b+c=0`

`<=>a_1=-1(l),a_2=4(tm)`

`<=>sqrt{2x-1}=4`

`<=>2x-1=16`

`<=>x=17/2(tm)`

Vậy `S={17/2}`

Akai Haruma
26 tháng 6 2021 lúc 16:15

d.

ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:

$a^2+2-5a=-2$

$\Leftrightarrow a^2-5a+4=0$

$\Leftrightarrow (a-1)(a-4)=0$

$\Rightarrow a=1$ hoặc $a=4$

$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$

$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)

e. ĐKXĐ: $x\geq \frac{1}{2}$

Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:

$a^2+1-3a-5=0$

$\Leftrightarrow a^2-3a-4=0$

$\Leftrightarrow (a+1)(a-4)=0$

Vì $a\geq 0$ nên $a=4$

$\Leftrightarrow \sqrt{2x-1}=4$

$\Leftrightarrow x=\frac{17}{2}$

Akai Haruma
26 tháng 6 2021 lúc 16:12

a.

$\sqrt{x^2-2x+1}=2$

$\Leftrightarrow \sqrt{(x-1)^2}=2$

$\Leftrightarrow |x-1|=2$

$\Rightarrow x-1=\pm 2$

$\Leftrightarrow x=3$ hoặc $x=-1$ (đều thỏa mãn)

b. ĐKXĐ: $x\geq 1$ hoặc $x\leq -1$

PT \(\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2-1=x^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ 1=0\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm

c. ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=4$

$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=2$

$\Leftrightarrow x=2^2+5=9$ (thỏa mãn)

 

Khánh An Ngô
Xem chi tiết
HT.Phong (9A5)
24 tháng 9 2023 lúc 10:10

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)