cho P= a^2+3a+1 và a là số nguyên. Với giá trị nào của a thì P là lũy thừa của 5.
Cho \(M=a^2+3a+1\left(a\in N\right)\)
a) Chứng minh rằng Mọi ước của M đều là số lẻ
b)Tìm a sao cho M chia hết cho 5
c) Với những giá trị nào của a thì M là lũy thừa của 5
a) Giả sử ước của M là số chẵn thì \(M=2.k\Leftrightarrow a^2+3a+1=2k\)
Ta thấy \(a^2+3a+1=a\left(a+1\right)+2a+1\)
a(a + 1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2. Vậy thì a(a + 1) + 2a chia hết cho 2.
Vì 2k chia hết cho 2, a(a + 1) + 2a cũng chia hết cho 2 nên 1 chia hết 2 (vô lý)
Vậy nên mọi ước của M đều là số lẻ.
b) Đặt \(a=5u+v\left(u\in N;0\le v\le4\right)\)
Khi đó \(M=\left(5u+v\right)^2+3\left(5u+v\right)+1\)
\(=25u^2+10uv+v^2+15u+3v+1\)
\(=\left(25u^2+10uv+15u\right)+v^2+3v+1\)
Để M chia hết 5 thì \(v^2+3v+1⋮5\)
Với \(0\le v\le4\), ta thấy chỉ có v = 4 là thỏa mãn.
Vậy \(a=5u+4\left(u\in N\right)\)
c) Để M là lũy thừa của 5 thì \(a=5u+4\left(u\in N\right)\)
\(\Rightarrow M=\left(5u+4\right)^2+3\left(5u+4\right)+1\)
Với n chẵn, a có tận cùng là chữ số 4. Vậy thì M có tận cùng là chữ số 9
Vậy không thể là lũy thừa của 5.
Với n lẻ, a có tận cùng là chữ số 9. Vậy thì M có tận cùng là chữ số 9
Vậy không thể là lũy thừa của 5.
Vậy không tồn tại số a để M là lũy thừa của 5.
đây là đề thi tuyển sinh lớp 10 chuyên trường PTNK-ĐHQG-TP.Hồ Chí Minh(vòng 2) năm 2013-2014 ak
Cho M=a2+3a+1(a∈N)
a) Chứng minh rằng Mọi ước của M đều là số lẻ
b)Tìm a sao cho M chia hết cho 5
c) Với những giá trị nào của a thì M là lũy thừa của 5
Bài 1: Cho số hữu tỉ sau: x = \(\frac{2a-5}{-3}\)
Với giá trị nào của a thì
a) x là số dương
b) x là số âm
c) x là số 0
Bài 2: Cho các số hữu tỉ
x = \(\frac{3a-5}{4}\)( a khác 0 )
Với giá trị nguyên nào của a thì x là số nguyên
1) a) Để x > 0
=> \(2a-5< 0\)
\(\Rightarrow2a< 5\)
\(\Rightarrow a< 2,5\)
\(\text{Vậy }x>0\Leftrightarrow a< 2,5\)
b) Để x < 0
\(\Rightarrow2a-5>0\)
\(\Rightarrow2a>5\)
\(\Rightarrow a>2,5\)
\(\text{Vậy }x< 0\Leftrightarrow a>2,5\)
c) Để x = 0
\(\Rightarrow2a-5=0\)
\(\Rightarrow2a=5\)
\(\Rightarrow a=2,5\)
\(\text{Vậy }x=0\Leftrightarrow a=2,5\)
2) \(\text{Vì }a\inℤ\Rightarrow3a-5\inℤ\)
\(\text{mà }x\inℤ\Leftrightarrow3a-5⋮4\)
\(\Rightarrow3a-5\in B\left(4\right)\)
\(\Rightarrow3a-5\in\left\{0;4;8;...\right\}\)
\(\Rightarrow3a\in\left\{5;9;13;....\right\}\)
\(\Rightarrow a\in\left\{\frac{5}{3};3;\frac{13}{3};6;....\right\}\)
\(\text{Mà }a\inℤ\Rightarrow a\in\left\{3;6;9;...\right\}\text{thì }x\inℤ\)
Cho số hữu tỉ x= \(\frac{a-5}{3a}\)( a khác 0). Với giá trị nguyên nào của a thì x là số nguyên?
ta có (a-5) ::3a <=> 3(a-5) :: 3a <=> 3a -15 :: 3a <=> 15 ::3a <=> 5::a
như vậy a ={-1,+1,-5,+5}
bài 1:cho số hữu tỉ sau: x=2a-5^-3
với giá trị nào của a thì
a. x là số dương
b. x là số âm
c. x là số 0
bài 2:cho số hữu tỉ
x=3a-5^4a, (a khác 0)
với giá trị nguyên nào của a thf x nguyên.
bài 3:chứng tỏ
x=15n+1^30n+1 là phân số tối giản với n thuộc N
Bài 1: Cho số hữu tỉ x = a - 5 ( a khác 0 )
Với giá trị nguyên nào của a thì x có giá trị nguyên
Bài 2: Tìm giá trị nguyên của a để các biểu thức sau có giá trị nguyên
A= 3a + 9/a - 4 B= 6a + 5/ 2a - 1
ta thấy rằng 5 phải chia hết cho a tức là
a(U)5=1,-1;5,-5
vậy a 1,-1,5,-5 thì x có giá trị nguyên
1, Khi nào thì A được gọi là tập hợp con của B ? Kí hiệu ?
2, Giao của 2 tập hợp là gì ? Kí hiệu
3, Viết tập hợp số tự nhiên, số nguyên
4, Giá trị tuyệt đối của số nguyên a là gì ? kí hiệu
5, Lũy thừa bậc n của a là gì ? Viết công thức
6, Phát biểu quy tắc :
* cộng 2 số nguyên âm
* cộng 2 số nguyên khác dấu
* tìm 2 số nguyên
Cho a,n đều là số nguyên dương lớn hơn 1, CMR
Nếu an-1 là số nguyên tố thì a=2 và n là số nguyên tố
Nếu an+1 là số nguyên tố thì a chia hết cho2 và n là lũy thừa của 2
Bài 3: Cho P=(x+5)(ax2+bx+25) và Q=x3+125
a) Thu gọn P theo lũy thừa giảm dần của x
b) Với giá trị nào của a và b thì P=Q với mọi x
Bài 4: 1) Cho biểu thức A=5x+2y và B=9x+7y
a) Tính giá trị của biểu thức 7A-2B
b)Chứng minh rằng nếu các số nguyên x,y thỏa mãn 5x+2y chia hết 17 thì 9x+7y cũng chia hết 17