Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Giang Nguyễn
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết
Loan Trinh
Xem chi tiết
pham trung thanh
31 tháng 5 2018 lúc 16:59

Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)

\(\Rightarrow\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)

Biển Vũ Đức
Xem chi tiết
Phạm Nguyễn Tất Đạt
4 tháng 4 2018 lúc 21:11

a)Áp dụng bđt AM-GM cho 6 số không âm a+b,b+c,c+a ta được

\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

TT\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

Nhân vế theo vế ta được:\(2\left(a+b+c\right)\cdot\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\)\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)

Vũ Đình Nguyên
Xem chi tiết
Mr Lazy
8 tháng 8 2016 lúc 16:53

B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)

TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)

\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)

\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)

\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)

Xem đây là một phương trình bậc hai ẩn a, tham số b.

Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)

\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)

Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)

(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)

TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là 

\(-\frac{4}{3}\le a,b,c\le0\)

Kết hợp 2 trường hợp lại, ta có đpcm.

Vũ Thị Như Quỳnh
8 tháng 10 2016 lúc 20:29

dễ quá 

dễ quá

mình biêt s

làm đó

Quach Bich
Xem chi tiết
Quach Bich
Xem chi tiết
Loan Trinh
Xem chi tiết
Nguyễn Hương Thảo
Xem chi tiết
𝑳â𝒎 𝑵𝒉𝒊
2 tháng 3 2020 lúc 15:03

\(\left(8x-4x^2-1\right)\left(x^2+2x+1\right)=4\left(x^2+x+1\right)\)

\(\Leftrightarrow8x^3+16x^2+8x-4x^4-8x^3-4x^2-x^2-2x-1=4x^2+4x+4\)

\(\Leftrightarrow11x^2+6x-4x^4-1=4x^2+4x+4\)

\(\Leftrightarrow11x^2+6x-4x^2-1-4x^2-4x-4=0\)

\(\Leftrightarrow7x^2+2x-4x^4-4=0\)

\(\Leftrightarrow\left(-4x^3-4x^2+3x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(-4x^2-8x-5\right)\left(x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Khách vãng lai đã xóa