Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn hoàng mai
Xem chi tiết
VRCT_Ran Love Shinichi
15 tháng 6 2017 lúc 21:21

a, Ta có: BE song song AC ( theo bài ra)

               AB song song CE ( E thuộc CD)

       nên ABEC là hình bình hành, do đó AC=BE

               mà AC = BD

         nên BD=BE do đó BDE là tam giác cân

b, Ta có AC song song BE nên ˆBEC=ˆACD

        mà ˆBED=ˆBDC ( BDE là tam giác cân )

                       do đó  ˆACD=ˆBDC

      Xét tg ACD và tg BDC có : ˆACD=ˆBDC

                                                AC=BD( theo gt )

                                                BC là cạnh chung

        nên tg ACD =tg BDC ( c-g-c)

c, Theo chứng minh câu b, ta có: tg ACD= tg BDC

              do đó ˆADC=ˆBCD

        Vậy ABCD là hình thang cân

Ý Phan Nguyễn Như
Xem chi tiết
Đào Lương Đình
10 tháng 12 2021 lúc 15:39

C.Tính chất 1,2,3.

Dương Võ Quỳnh Phương
Xem chi tiết

Bài 1 : Vì hình thang ABCD cân 

=> AD = BC 

=> ADC = BCD 

=> AC = BD 

Xét ∆ACD và ∆BDC ta có : 

AD = BC 

ADC = BCD 

AC = BD

=> ∆ACD = ∆BDC (c.g.c)

=> DAC = CBD 

Mà DAB = CBA ( hình thang ABCD cân )

=> OAB = OBA 

=> ∆ OAB cân 

Mà DOC = AOB = 60° 

=> ∆OAB đều ( trong ∆ cân có 1 góc = 60° thì ∆ đó là ∆ đều ) 

=> AB = BO = AO (1)

Xét ∆ ABC và ∆BAD ta có : 

DAB = ABC ( cmt)

AB chung 

AD = BC 

=> ∆ ABC = ∆BAD(c.g.c)

=> ACB = ADB 

Mà ADC = BCD (cmt)

=> ODC = OCD 

=> ∆ODC cân tại O

Mà DOC = 60° 

=> ∆ODC đều 

=> OD = OC = DC (2)

Từ (1) và (2) 

Bạn tự cộng các cạnh vào với nhau nhé

Bài 2) Kẻ BK vuông góc với CD 

Xét ∆ vuông ADH và ∆ vuông BCK ta có : 

AD = BC 

ADC = BCD

=> ∆ADH = BCK ( ch - gn)

=> AH = BK 

=> DH = CK

Ta có AH vuông góc với DC 

BK vuông góc với CD 

=> AH //BK

Xét ∆ABK và ∆AHK ta có : 

AH = BK(cmt)

AK chung 

HAK = AKB ( so le trong) 

=> ∆ABK = ∆AHK (c.g.c)

=> HK = AB 

Ta có : CD = DH + HK + KC 

=> DH + CK = CD - HK 

Mà HK = AB (cmt)

=> DH + CK = CD - AB 

Vì DH = CK 

Mà 2DH = CD - AB 

=> DH = ( CD - AB )/2 

=> 2CK = CD - AB 

=> CK = ( CD- AB)/2 

=> DH = (CD - AB)/2 (dpcm)

hàn hàn
Xem chi tiết
Gia Huy
5 tháng 7 2023 lúc 10:19

Theo đề có:

\(\dfrac{HD}{BH}=\dfrac{AD^2}{AB^2}=\dfrac{4^2}{6^2}=\dfrac{4}{9}\)

Tam giác HDC ∼ tam giác HBA nên: 

\(\dfrac{DC}{AB}=\dfrac{HD}{BH}=\dfrac{4}{9}\Rightarrow DC=AB.\dfrac{4}{9}=6.\dfrac{4}{9}=\dfrac{8}{3}\left(cm\right)\)

Từ C kẻ CK là đường cao của tam giác ABC có: \(KB=AB-DC=6-\dfrac{8}{3}=\dfrac{10}{3}\left(cm\right)\)

\(\Rightarrow BC=\dfrac{\sqrt{244}}{3}=\dfrac{2\sqrt{61}}{3}\left(cm\right)\)

Xét tam giác vuông ABD có \(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

Trần Hà Nhung
Xem chi tiết
ST
4 tháng 7 2018 lúc 8:07

Vì AB//CD =>góc B + góc C = 180 độ (trong cùng phía)

=>góc B + góc C + góc B - góc C = 180 độ + 24 độ

=>2 . góc B = 204 độ

=> góc B = 102 độ

=> góc C = góc B - 24 độ = 102 độ - 24 độ = 78 độ

Ta có: AB//CD => góc A+góc D = 180 độ (trong cùng phía)

=> \(1,5\widehat{D}+\widehat{D}=180^o\)

=>\(2,5\widehat{D}=180^o\Rightarrow\widehat{D}=72^o\)

=>góc A = 180 độ - góc D = 180 độ - 72 độ = 108 độ

Vậy...

Ngô Phạm Lan Trinh
Xem chi tiết
Đỗ Ngọc Mỹ Vy
Xem chi tiết
๖ۣۜNɦσƙ ๖ۣۜTì
28 tháng 6 2019 lúc 9:40

Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E.

Ta có:

Góc ACD = góc BED (tính chất góc hình bình hành) 
mà gócBDE = gócBED ( BDE là tam giac cân tại B) 
=> góc ACD= góc BDC 
xét 2 tam giác ACD và tam giác BDC có: 
+ AC = BD ( gt) 
+ góc ACD = góc BDC 
+có cùng cạnh CD 
=> tam giác ACD = tam giác BDC ( cạnh,góc,cạnh) 

 xét hình thang ABCD: 
AD = BC vì tam giác ACD = tam giác BDC 
=> ABCD là hình thang cân.

Vậy hình thang có hai đường chéo bằng nhau là hình thang cân.(đpcm)

tamanh nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2021 lúc 22:41

1: Sai

2: Sai

3: Đúng

4: Đúng

shunnokeshi
Xem chi tiết