Tìm m để hệ phương trình có nhiệm duy nhất (x;y) sao cho x và y là hai nghiệm của phương trình
\(t^2-\left(3m-1\right)+m^4+9m-13=0\)
Cho hệ phương trình mx+2y=m+2 (2m-1)x+(m + 1)y = 2(m + 1)a) Giải hệ phương trình với m = 3 ? b) Tìm giá trị của m để hệ phương trình có nghiệm duy nhất , vô số nhiệm
a: \(\left\{{}\begin{matrix}mx+2y=m+2\\\left(2m-1\right)x+\left(m+1\right)y=2\left(m+1\right)\end{matrix}\right.\)
Khi m=3 thì hệ sẽ là:
3x+2y=5 và 5x+4y=8
=>x=2 và y=-1/2
b: Hệ có nghiệm duy nhất thì \(\dfrac{m}{2m-1}< >\dfrac{2}{m+1}\)
=>m^2+m<>4m-2
=>m^2-3m+2<>0
=>m<>1 và m<>2
hệ có vô số nghiệm thì \(\dfrac{m}{2m-1}=\dfrac{2}{m+1}=\dfrac{2}{2\left(m+1\right)}=\dfrac{1}{m+1}\)
=>m/2m-1=2/m+1 và 2/m+1=1/m+1(vô lý)
=>Ko có m thỏa mãn
Để hệ vô nghiệm thì m/2m-1=2/m+1<>1/m+1
=>m=2 hoặc m=1
Cho hệ phương trình\(\hept{\begin{cases}mx-2y=m\\-2x+y=m+1\end{cases}}\)
Tìm m để hệ có nhiệm duy nhất (x, y) thỏa mãn x+y=1
Cho hệ phương trình :
mx+4y=9 và x+my=8
a, Giải hệ phương trình với m=1.
b, Tìm m để hệ phương trình có nghiệm (1;3)
c, Tìm m để hệ phương trình có nghiệm duy nhất . Tìm nghiệm đó
a) Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+4y=9\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=8-y=8-\dfrac{1}{3}=\dfrac{23}{3}\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{23}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
b) Để hệ phương trình có nghiệm (1;3) thì
Thay x=1 và y=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}m+12=9\\1+3m=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\3m=7\end{matrix}\right.\Leftrightarrow m\notin\varnothing\)
Vậy: Không có giá trị nào của m để hệ phương trình có nghiệm (1;3)
Thay m=1 vào hpt trên ta có:
1.x+4y=9 và x+1y=8
<=> x+4y=9 và x+y=8
<=> x+4y=9 và 4x+4y=32
<=> -3x = -23 và x+y=8
<=> x = \(\dfrac{23}{3}\) và y = \(\dfrac{1}{3}\)
b) Để hệ phương trình có nghiệm (1;3)
=> x = 1; y = 3
Thay x = 1; y = 3 vào hpt trên ta có:
m1+43=9 và 1+m3=8
<=> m+12 = 9 và 1 + 3m = 8
<=> m = -3 và m = \(\dfrac{7}{3}\)
Vậy m \(\in\left\{-3;\sqrt{\dfrac{7}{3}}\right\}\) thì hệ phương trình có nghiệm (1;3)
c) mx+4y=9 và x+my=8
SD phương pháp thế
Ra pt bậc nhất 1 ẩn: 8m - m2y + 4y = 9
<=> 8m - y(m2 -4) = 9
Để hệ phương trình có nghiệm duy nhất => m2 -4 \(\ne\) 0
<=> m2 \(\ne\) 4
<=> m \(\ne\) 2 và m \(\ne\) -2
Cho hệ phương trình x + my =2m hoặc mx + y = 1-m (m là tham số )
1.Tìm các giá trị của m để hệ phương trình :
a)Có nghiệm duy nhất. Tìm nghiệm duy nhất đó
b)Vô nghiệm
c)Vô số nghiệm
2.Trong trường hợp hệ phương trình có nghiệm duy nhất (x,y)
a)Hãy tìm giá trị m nguyên để x và y cùng nguyên
b)tìm hệ thức liên hệ giữa x và y không phụ thuộc m
cho hệ phương trình x+y=1 và mx+2y=m. Tìm m để hệ phương trình có nghiệm duy nhất? hệ vô số nghiệm.
Cho hệ phương trình:
\(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
a) Tìm m để hệ phương trình có nghiệm duy nhất, vô nghiệm, vô số nghiệm
b) Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
`a,x-3y=2`
`<=>x=3y+2` ta thế vào phương trình trên:
`2(3y+2)+my=-5`
`<=>6y+4+my=-5`
`<=>y(m+6)=-9`
HPT có nghiệm duy nhất:
`<=>m+6 ne 0<=>m ne -6`
HPT vô số nghiệm
`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`
HPT vô nghiệm
`<=>m+6=0,-6 ne 0<=>m ne -6`
b,HPT có nghiệm duy nhất
`<=>m ne -6`(câu a)
`=>y=-9/(m+6)`
`<=>x=3y+2`
`<=>x=(-27+2m+12)/(m+6)`
`<=>x=(-15+2m)/(m+6)`
`x+2y=1`
`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`
`<=>(2m-33)/(m+6)=1`
`2m-33=m+6`
`<=>m=39(TM)`
Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`
b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)
Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)
\(\Leftrightarrow2m-33=m+6\)
\(\Leftrightarrow2m-m=6+33\)
hay m=39
Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
Bài 1:Cho hệ
mx+y=3 (1)
9x+my=2m+3 (2)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: 3x+2y=9
Bài 2:Cho hệ
mx+y= m^2
x+my=1 (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0
Cho hệ phương trình :
mx+4y=9 và x+my=8
a, Giải hệ phương trình với m=1.
b, Tìm m để hệ phương trình có nghiệm (1;3)
c, Tìm m để hệ phương trình có nghiệm duy nhất . Tìm nghiệm đó
a, Theo bài ra ta có : \(\hept{\begin{cases}mx+4y=9\\x+my=8\end{cases}}\)
Thay m = 1 vào hệ phương trình trên ta có :
\(\hept{\begin{cases}x+4y=9\\x+y=8\left(2\right)\end{cases}}\)Xét hiệu 2 phương trình : \(3y=1\Leftrightarrow y=\frac{1}{3}\)
Thay vào (2) ta được : \(x+\frac{1}{3}=8\Leftrightarrow x=8-\frac{1}{3}=\frac{23}{3}\)
Vậy \(x=\frac{23}{3};y=\frac{1}{3}\)
b, Vì hệ phương trình có nghiệm ( 1 ; 3 ) nên thay x = 1 ; y = 3 vào hệ phương trình trên :
\(\hept{\begin{cases}m+12=9\\3m=8\end{cases}\Leftrightarrow}m=-3;m=\frac{8}{3}\)
Vậy \(m=-3;m=\frac{8}{3}\)
a, Vì m = 1 thay vào hệ pt, ta có pt sau
\(\hept{\begin{cases}x+4y=9\\x+y=8\end{cases}\Leftrightarrow\hept{\begin{cases}x=9-4y\left(1\right)\\9-4y+y=8\left(2\right)\end{cases}}}\)
\(\left(2\right)\Leftrightarrow3y=1\)
\(\Rightarrow y=\frac{1}{3}\)
Thay vào pt ( 1 ), ta có :
\(x=9-4.\frac{1}{3}=\frac{23}{3}\)
Vậy nghiệm ( x ; y ) pt là\(\left(\frac{23}{3};\frac{1}{3}\right)\)
b, Vì pt có nghiệm là ( 1 ; 3 ) hay x = 1 ; y = 3
Thay vào pt, ta có :\(\hept{\begin{cases}m+12=9\\1+3m=8\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\\m=\frac{7}{3}\end{cases}}\)
Vậy ...
Cho hệ phương trình ( x+y = 2 mx−y = m với m là tham số.
a) Giải hệ phương trình khi m = −2.
b) Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x; y) sao cho 3x−y = −10.
c) Tìm giá trị nguyên của m để hệ phương trình có nghiệm (x; y) mà x, y là những số nguyên
a) Với m = -2
=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy S = {0; 2}
b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\)
=> x + mx = 2 + m
<=> x(m + 1) = 2 + m
Để hpt có nghiệm duy nhất <=> \(m\ne-1\)
<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)
=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)
Mà 3x - y = -10
=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)
<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)
<=> 6m = -8
<=> m = -4/3
c) Để hpt có nghiệm <=> m \(\ne\)-1
Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)
Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)
Để x nguyên <=> 1 \(⋮\)m + 1
<=> m +1 \(\in\)Ư(1) = {1; -1}
<=> m \(\in\) {0; -2}
Thay vào y :
với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)
m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)
Vậy ....