Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khoa Nguyễn Đăng
Xem chi tiết
Trần Nguyễn Khánh Linh
9 tháng 5 2018 lúc 19:58

bđt\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)(luôn đúng do bđt bunhia copxki)

THI QUYNH HOA BUI
Xem chi tiết
Chi Khánh
Xem chi tiết
♡H O P E L E S S G I R L...
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Trần Thùy
Xem chi tiết
Nguyễn Phương My
7 tháng 10 2017 lúc 16:10

Sr chụy nha, em chưa học tới ~ :]]]

Tuyển Trần Thị
7 tháng 10 2017 lúc 18:04

bdt tương đương với  \(a^2+b^2+c^2+d^2+2ac+2bd\le a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)

\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2\left(ac+bd\right)\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(b^2+d^2\right)}\ge ac+bd\)

neu ac+bd \(\le0\) thi bdt can duoc cm 

neu ac+bd \(\ge0\) thi \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2abcd\)

                \(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

 \(\Leftrightarrow b^2c^2+a^2d^2-2abcd\ge0\Leftrightarrow\left(bc-ad\right)^2\ge0\left(dpcm\right)\)

Thanh Ngân Huỳnh
Xem chi tiết
Thắng Nguyễn
1 tháng 4 2017 lúc 19:41

Ta chứng minh BĐT tổng quát 

\(\frac{a_1^2+a_2^2+..+a_n^2}{b_1+b_2+...+b_n}\ge\frac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)

Đẳng thức xảy ra khi \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n}\)

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\left(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+...+\frac{a_n^2}{b_n}\right)\left(b_1+b_2+...+b_n\right)\ge\left(a_1+a_2+...+a_n\right)^2\)

\(\Leftrightarrow\frac{a_1^2+a_2^2+..+a_n^2}{b_1+b_2+...+b_n}\ge\frac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\) (ĐPCM)

BĐT này đúng với BĐT đề bài cho 2 số \(x,y\) dương

T/b: sau này BĐT thông dụng thì tên nó sẽ là BĐT C-S dạng Engel hay BĐT Svac :)

Kyle Thompson
Xem chi tiết
Nguyễn Linh Chi
16 tháng 4 2020 lúc 20:55

\(\frac{a^2+b^2}{2}\ge ab\)(1)

<=> \(a^2+b^2\ge2ab\)

<=> \(a^2+b^2-2ab\ge0\)

<=> \(\left(a-b\right)^2\ge0\)đúng với a, b bất kì 

Vậy (1) đúng với mọi a, b  bất kì

Khách vãng lai đã xóa