tính nhanh
1+1+1+1+1+2+2+2+3+3+3
tính nhanh
1/7 x 21/8 - 3/8 x 1/7 -1/7 x 2/8
\(\dfrac{1}{7}\times\dfrac{21}{8}-\dfrac{3}{8}\times\dfrac{1}{7}-\dfrac{1}{7}\times\dfrac{2}{8}\\ =\dfrac{1}{7}\times\left(\dfrac{21}{8}-\dfrac{3}{8}-\dfrac{2}{8}\right)\\ =\dfrac{1}{7}\times\dfrac{16}{8}\\ =\dfrac{1}{7}\times2\\ =\dfrac{2}{7}\)
\(\dfrac{1}{7}\times\dfrac{21}{8}-\dfrac{3}{8}\times\dfrac{1}{7}-\dfrac{1}{7}\times\dfrac{2}{8}\)
=\(\dfrac{1}{7}\times\left(\dfrac{21}{8}-\dfrac{3}{8}-\dfrac{2}{8}\right)\)
=\(\dfrac{1}{7}\times2\)
=\(\dfrac{2}{7}\)
\(=\dfrac{1}{7}\text{×}\left(\dfrac{21}{8}-\dfrac{3}{8}-\dfrac{2}{8}\right)\)
\(=\dfrac{1}{7}\text{×}2\)
\(=\dfrac{2}{7}\)
Tính nhanh
1/3.2/7+1/3.4/7+1/3:7
\(\dfrac{1}{3}\left(\dfrac{2}{7}+\dfrac{4}{7}+\dfrac{1}{7}\right)=\dfrac{1}{3}\times1=\dfrac{1}{3}\)
câu 1: so sánh phân số
a) 2005/2001 và 2009/2005 b) 13/15 ; 1313/1515 và 131313/151515
câu 2: tính nhanh
1/4 : 0,25 - 1/8 : 0,125 + 1/2 : 0,5 - 1/10 : 0,1
câu 3:
a) tìm giá trị của a, biết:
( 1 + 4 + 7 + ........... + 100) : a = 17
b) tìm giá trị của X biết: ( X - 1/2) x 5/3 = 7/4 - 1/2
2:
=1-1+1-1=0
3:
a: =>34*(100+1)/2:a=17
=>a=101
b: =>5/3(x-1/2)=5/4
=>x-1/2=5/4:5/3=3/4
=>x=5/4
1a, \(\dfrac{2005}{2001}\) = 1+\(\dfrac{4}{2001}\); \(\dfrac{2009}{2005}\)=1+\(\dfrac{4}{2005}\)vì\(\dfrac{4}{2001}\)>\(\dfrac{4}{2005}\)nên\(\dfrac{2005}{2001}\)>\(\dfrac{2009}{2005}\)
1b,\(\dfrac{1313}{1515}\)=\(\dfrac{1313:101}{1515:101}\)= \(\dfrac{13}{15}\); \(\dfrac{131313}{151515}\)=\(\dfrac{131313:10101}{151515:10101}\)=\(\dfrac{13}{15}\)
Vậy \(\dfrac{13}{15}\)=\(\dfrac{1313}{1515}\)=\(\dfrac{131313}{151515}\)
Tính nhanh
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(=\dfrac{1}{1}\cdot\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{4}+\dfrac{1}{4}\cdot\dfrac{1}{5}+\dfrac{1}{5}\cdot\dfrac{1}{6}+\dfrac{1}{6}\cdot\dfrac{1}{7}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(=\dfrac{1}{1}-\dfrac{1}{7}=\dfrac{7}{7}-\dfrac{1}{7}=\dfrac{6}{7}\)
Tính nhanh
1+2+3+4+...+19=...
GIÚP EM VỚI
Cíuuu
Bài 1: Tính nhanh
1) B= \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
2) C= \(\dfrac{1}{2}+\dfrac{1}{14}+\dfrac{1}{35}+\dfrac{1}{65}+\dfrac{1}{104}+\dfrac{1}{152}\)
Bài 2: Chứng minh
\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+\dfrac{1}{299}+\dfrac{1}{300}>\dfrac{2}{3}\)
tính nhanh
1/6x7+1/7x8+1/8x9+1/9x10+1/10x11
=1/6-1/7+1/7-1/8+1/8-1/9+...+1/10-1/11
=1/6-1/11=5/66
Tính nhanh
1×2×3×4×5×6×7×8×9×10×11×12×13×14×15×16×17×18×19×20
Đề ra: Tính nhanh
1/12+1/20+1/30+.............+1/9702
Ta có: \(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}\)
\(=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{98\cdot99}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{99}\)
\(=\dfrac{32}{99}\)
Giải:
1/12+1/20+1/30+...+1/9702
=1/3.4+1/4.5+1/5.6+...+1/98.99
=1/3-1/4+1/4-1/5+1/5-1/6+...+1/98-1/99
=1/3-1/99
=32/99
Chúc bạn học tốt!
Ta sử dụng t/c sau:
`1/(a(a+1))=1/a-1/(a+1)`
`=>1/12+1/20+1/30+...+1/9072`
`=1/(3.4)+1/(4.5)+....+1/(98.99)`
`=1/3-1/4+1/4-1/5+....+1/98-1/99`
`=1/3-1/99`
`=32/99`
Tính nhanh
1, 1262 - 152 * 126 + 5776
2, 38 * 58 - (154 - 1)(154 + 1)
`a, 126^2 - 152 . 126 + 5776.`
`= 126^2 - 2 . 76 . 126 + 76^2`
`= (126+76)^2 = 202^2 = 40804`
`b, 3^8 . 5^8 - (15^4-1)(15^4+1)`
`= 15^8 - 15^8 + 1`
`= 1`