CMR:x^2/4^2+y^2/2^2+z^2/x^2>=x/y+y/z+z/x ( x,z,y khác 0)
Giúp mình với
e) Cho x^2+y^2+2 =2.(x+y) cmr:x=y=1
f) Cho x^2+y^2+z^2=3 và x+y+z=3 cmr:x=y=z=1
f: x+y+z=3
=>x^2+y^2+z^2+2(xy+xz+yz)=9
=>2(xy+yz+xz)=6
=>xy+yz+xz=3
mà x+y+z=3
nên x=y=z=1
e: x^2+y^2+2=2(x+y)
=>(x+y)^2-2xy+2-2(x+y)=0
=>(x+y)(x+y-2)-2(xy-1)=0
=>x=y=1
cho các số x,y,z khác 0vaf x^2=yz;y^2=xz;z^2=xy CMR:x=y=z
Cho x+y+z=0 và x khác y khác z.Tính
\(A=\frac{x^2}{x^2-y^2-z^2}+\frac{y^2}{y^2-z^2-x^2}+\frac{z^2}{z^2-x^2-y^2}\)
\(B=\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+z^2-y^2}\)
Các bạn giúp mình nhanh với
cho a,b, c, x, y, z :{a/x+b/y+c/z=0;x/a+y/b+z/c=1
CMR:x^2/a^2+y^2/b^2+z^2/c^2=1
Cho x,y,z khác 0 thỏa mãn
x+y+z = 1/2
1/x^2 + 1/y^2 + 1/z^2 = 4
1/x + 1/y + 1/z > 0
Tính P=(y+z)(z^3 + x^3)(x^2017 + y^2017)
giúp mình vớii gấp lắm!!!!!!!!!!!!!!!!!!!
x/z=z/y
CMR:x^2+z^2/y^2+z^2=x/y
Ta có:\(\frac{x}{z}=\frac{z}{y}\Rightarrow xy=z^2\)
Trong khi :\(\frac{x^2+y^2}{z^2+y^2}=\frac{x^2+xy}{xy+y^2}\)
\(=\frac{x\left(x+y\right)}{y\left(x+y\right)}=\frac{x}{y}\left(Đpcm\right)\)
cho a, b, c, x, y, z:{a/x+b/y+c/z=0;x/a+y/b+z/c=1
CMR:x^2/a^2+y^2/b^2+z^2/c^2=1
Ta có :\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)
Lại có \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
=> \(\left(\frac{x}{a}\right)^2+\left(\frac{y}{b}\right)^2+\left(\frac{z}{c}\right)^2+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)
=> \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xyc}{abc}+\frac{2ayz}{abc}+\frac{2bxz}{abc}=1\)
=> \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2}{abc}\left(xyc+ayz+bxz\right)=1\)
=> \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(\text{vì }xyc+ayz+bxz=0\right)\)(đpcm)