giải phương trình:(x+5)(x+2)-3(4x-3)=(5_x)^2
Giải phương trình:
\(A^5_x=336C^{x-5}_{x-2}\)
Giải phương trình:
\(A^5_x=336C^{x-5}_{x-2}\)
Bài 1: Giải phương trình và bất phương trình sau: 1. 5.(2-3x). (x-2) = 3.( 1-3x) 2. 4x^2 + 4x + 1= 0 3. 4x^2 - 9= 0 4. 5x^2 - 10=0 5. x^2 - 3x= -2 6. |x-5| - 3= 0
giải phương trình (x+5)(x+2)-3(4x-3)=(5-x)^2
pt <=> x^2+7x+10-12x+9 = x^2-10x+25
<=> x^2-5x+19 = x^2-10x+25
<=> x^2-5x+19-(x^2-10x+25) = 0
<=> x^2-5x+19-x^2+10x-25 = 0
<=> 5x - 6 = 0
<=> 5x=6
<=> x=6/5
Vậy pt có tập nghiệm S = {6/5}
Tk mk nha
giải phương trình (x+4)/(x^2-3x+2) – (x+1)/(x^2-4x+3)=(2x+5)/(x^2-4x+3)
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
bài 1 : Giải các phương trình sau: a/ 4x + 20 = 0
b/ 2x – 3 = 3(x – 1) + x + 2
bài 2 : Giải các phương trình sau: a/ (3x – 2)(4x + 5) = 0
b/ 2x(x – 3) – 5(x – 3) = 0
a/ 4x + 20 = 0
⇔4x = -20
⇔x = -5
Vậy phương trình có tập nghiệm S = {-5}
b/ 2x – 3 = 3(x – 1) + x + 2
⇔ 2x-3 = 3x -3+x+2
⇔2x – 3x = -3+2+3
⇔-2x = 2
⇔x = -1
Vậy phương trình có tập nghiệm S = {-1}
câu tiếp theo
a/ (3x – 2)(4x + 5) = 0
3x – 2 = 0 hoặc 4x + 5 = 0
3x – 2 = 0 => x = 3/24x + 5 = 0 => x = – 5/4Vậy phương trình có tập nghiệm S= {-5/4,3/2}
b/ 2x(x – 3) – 5(x – 3) = 0
=> (x – 3)(2x -5) = 0
=> x – 3 = 0 hoặc 2x – 5 = 0
* x – 3 = 0 => x = 3
* 2x – 5 = 0 => x = 5/2
Vậy phương trình có tập nghiệm S = {0, 5/2}
b1
a. 4x+ 20=0 <=> 4x= -20 <=> x= -20/4 <=> x= -5
b. 2x- 3= 3(x- 1)+ x+ 2 <=> 2x- 3= 3x- 3+ x+ 2
<=> 2x- 3= 4x- 1 <=> 2x- 4x= -1+ 3 <=> -2x= 2
<=> x= 2/-2 <=> x= -1
b2
a. (3x- 2)(4x+ 5)= 0
<=>\(\orbr{\begin{cases}3x-2=0\\4x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=2\\4x=-5\end{cases}}}\)
<=>\(\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{5}{4}\end{cases}}\)
b. 2x(x- 3)- 5(x- 3)= 0
<=> (x- 3)(2x- 5)= 0
<=> \(\orbr{\begin{cases}x-3=0\\2x-5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\2x=5\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{5}{2}\end{cases}}\)
giải phương trình:
(2-x)(x+1)-5(x-3)=-x^2-4x
\(\displaystyle \begin{array}{{>{\displaystyle}l}} ( 2-x)( x+1) -5( x-3) =-x^{2} -4x\\ \Leftrightarrow 2x+2-x^{2} -x-5x+15=-x^{2} -4x\\ \Leftrightarrow -x^{2} -4x+17=-x^{2} -4x\\ \Leftrightarrow 17=0\ \ \ \ ( Vô\ lý)\\ \ \Longrightarrow \ Phương\ trình\ đã\ cho\ ban\ đầu\ vô\ nghiệm\ \end{array}\)
giải phương trình:
(2-x)(x+1)-5(x-3)=-x^2-4x
\(\displaystyle \begin{array}{{>{\displaystyle}l}} ( 2-x)( x+1) -5( x-3) =-x^{2} -4x\\ \Leftrightarrow 2x+2-x^{2} -x-5x+15=-x^{2} -4x\\ \Leftrightarrow -x^{2} -4x+17=-x^{2} -4x\\ \Leftrightarrow 17=0\ \ \ \ ( Vô\ lý)\\ \ \Longrightarrow \ Phương\ trình\ đã\ cho\ ban\ đầu\ vô\ nghiệm\ \end{array}\)