Tìm \(x,y\varepsilon Z\)biết 2x+3y+4xy=9
Tìm x,y thuộc Z biết :
2x+3y+4xy=9
Tìm x,y thuộc Z biết
2x+3y+4xy=9
2x+3y+4xy=9
<=>4x+8xy+6y+3=21
<=>4x(2y+1)+3(2y+1)=21
<=>(2y+1)(4x+3)=21
đến đây lập bảng xét ước là ra
Tìm x,y nguyên biết x^2+3y^2+4xy+2x+4y-9=0
Bài 1. Phân tích các đa thức sau thành nhân tử a) y - 9 - x + 6x b) 25 - 4x? - 4xy - y c) x - xz + 4y - 2yz + 4xy d) 3x + 6xy - 48z + 3y? e) x - z + 4y - 4t - 4xy + 4zt f) +2x'y+xy-16x Bài 2. Tìm x biết a) 3x(-3)-4x+12 -0 b) -5x=0 c) (a-2 -(x+2 =0 d) -9-4x+3)=0 Bài 3. Tính nhanh giá trị biểu thức a) A= x - 4z? - 2xy + y với x = -16; y = -6; z = 45 b) B = x - y + 2y-1 với x = 75; y = 26. c) C = 2x + xy - x'y - 2y với x= y =
giúp e làm vs ạ em đang cần gấp
bạn viết lại đề đi, có số mũ, xuống dòng chứ thế này ai mà giải được
y^2-9-x^2+6x
25-4x^2-4xy-y^2
x^2-xz+4y^2-2yz+4xy
3x^2+6xy-48z^2+3y^2
x^2-z^2+4y^2-4t^2-4xy+4zt
x^3+2x^2y+xy^2-16x
Giúp mik với
Tìm x,y \(\varepsilon\)Z, thỏa mãn: xy - 2x + 3y = 13
\(xy-2x+3y=13\)
\(x\left(y-2\right)+3y-6=13-6\)
\(x\left(y-2\right)+3\left(y-2\right)=7\)
\(\left(y-2\right)\left(x+3\right)=7\)
\(\Rightarrow\left(y-2\right);\left(x+3\right)\in\text{Ư}\left(7\right)=\left\{\pm1;\pm7\right\}\)
Lập bảng giá trị
x+3 | 1 | -1 | 7 | -7 |
y-2 | 7 | -7 | 1 | -1 |
x | -2 | -4 | 4 | -10 |
y | 9 | -5 | 3 | 1 |
Vậy có các cặp số (x;y) là: (-2;9);(-4;-5);(4;3);(-10;1)
Tham khảo nhé~
\(xy-2x+3y=13\Leftrightarrow x\left(y-2\right)+3y-6=7\)
\(\Leftrightarrow x\left(y-2\right)+3\left(y-2\right)=7\Leftrightarrow\left(y-2\right)\left(x+3\right)=7\)
Tự làm tiếp nha !
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Tìm x,y \(\in Z\) biết: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow\left(2x^2+2y^2+4xy\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow2\left(x^2+y^2+2xy\right)+\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
Vì \(\left(x+y\right)^2\ge0\); \(\left(x+1\right)^2\ge0\); \(\left(y-1\right)^2\ge0\)\(\forall x,y\)
\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)
Vậy \(x=-1\)và \(y=1\)
Tìm x,y thuộc Z biết x^2+3y^2-4xy+4y-3=0
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)-\left(y^2-4y+4\right)=-1\\ \Leftrightarrow\left(x-2y\right)^2-\left(y-2\right)^2=-1\\ \Leftrightarrow\left(x-2y-y+2\right)\left(x-2y+y-2\right)=-1\\ \Leftrightarrow\left(x-3y+2\right)\left(x-y-2\right)=-1=\left(-1\right)\cdot1\)
\(TH_1:\left\{{}\begin{matrix}x-3y+2=1\\x-y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y=-1\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\ TH_2:\left\{{}\begin{matrix}x-3y+2=-1\\x-y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y=-3\\x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)\in\left\{\left(2;1\right);\left(6;3\right)\right\}\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)-\left(y^2-4y+4\right)+1=0\\ \Leftrightarrow\left(x-2y^2\right)-\left(y-2\right)^2=-1\\ \Leftrightarrow\left(x-2y-y+2\right)\left(x-2y+y-2\right)=-1\\ \Leftrightarrow\left(x-3y+2\right)\left(x-y-2\right)=-1\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-y-2\in Z\\x-3y+2\in Z\\x-y-2,x-3y+2\inƯ\left(-1\right)=\left\{-1;1\right\}\end{matrix}\right.\)
Ta có bảng:
\(x-3y+2\) | \(-1\) | \(1\) |
\(x-y-2\) | \(1\) | \(-1\) |
\(x\) | 6 | 2 |
\(y\) | 3 | 1 |