so sán:
A=2015/a2015+2013/a2014 và B=2014/a2014+2014/2015
Cho day tỉ số bằng nhau a1/a2=a2/a3=a3/4=...=a2014/a2015. CMR:
a1/a2015=(a1+a2+a3+...+a2014)2014/(a2+a3+a4+...+a2015)2014
Cho dãy tỉ số bằng nhau: a1/a2 = a2/a3 = a3/a4 = ... = a2014/a2015
Chứng minh rằng a1/a2015 = (a1+a2+a3+...+a2014/a2+a3+a4+...+a2015)^2014
Bạn nào giúp mình tick cho
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\)
=>\(\frac{a1}{a2}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(1\right)\)
\(\frac{a2}{a3}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2\right)\)
...........
\(\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2014\right)\)
Nhân (1),(2),....(2014) vế với vế:
\(\frac{a_1}{a_2}.\frac{a_2}{a_3}............\frac{a_{2014}}{a_{2015}}=\frac{a_1}{a_{2015}}=\left(\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2015}}\right)^{2014}\)
Vậy...
Cho dãy tỉ số bằng nhau: a1/a2=a2/a3=a3/a4=...=a2014/a2015. Cmr ta có dẳng thức:a1/a2015=(a1+a2+a3+...+a2014/a2+a3+a4+...+a2015).
Cho dãy tỉ số bằng nhau: a1/a2=a2/a3=a3/a4=...=a2014/a2015. Cmr ta có dẳng thức:a1/a2015=(a1+a2+a3+...+a2014/a2+a3+a4+...+a2015).
so sánh A=2013/2014 + 2014/2015 + 2015/2016 và B=2013+2014+2015/2014+2015+2016
A = \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{1}{2}+\frac{1}{2}=1\)
\(B=\frac{2013+2014+2015}{2014+2015+2016}<1\)
\(Vậy:A>B\)
Đúng nha Nguyễn Bình Minh
so sánh:
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\) và\(B=\) \(\frac{2013+2014+2015}{2014+2015+2016}\)
\(B=\frac{2013}{2014+2015+2016}+\frac{2014}{2014+2015+2016}+\frac{2015}{2014+2015+2016}\)
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015+2016}\)
\(\frac{2014}{2015}>\frac{2014}{2014+2015+2016}\)
\(\frac{2015}{2016}>\frac{2015}{2014+2015+2016}\)
\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}>\frac{2013+2014+2015}{2014+2015+2016}\)
Vậy: \(A>B\)
So sánh các biểu thức sau: A =2013+2014/2014+2015 và B=2013/2014 + 2014/2015
A=\(\dfrac{2013+2014}{2014+2015}=\dfrac{2013}{2014+2015}+\dfrac{2014}{2014+2015}\)
B=\(\dfrac{2013}{2014}+\dfrac{2014}{2015}\)
Vì \(\dfrac{2013}{2014}>\dfrac{2013}{2014+2015}\); \(\dfrac{2014}{2015}>\dfrac{2014}{2014+2015}\) nên B>A
so sánh A và B
A=2013+2014 / 2014+2015
B=2013+2014 / 2014+2015
So sánh:
a) A=9^10 và B= ( 8^9+7^9+6^9+...+2^9+1^9)
b) P= 2013/2014 + 2014/2015 + 2015/2016 với Q= 2013+2014+2015 / 2014+2015+2016
so sanh a và b biết a =2013/2014+2014/2015+2015/2016
và biết b = 2013+2014+2015/2014+2015+2016
Vì 2013/2014 ; 2014/2015 ; 2015/2016 < 1 => Tổng bé hơn 3
Mà 2013 > 3
Vậy a < b
a) So sánh \(\frac{2013}{2015}\) và \(\frac{2014}{2016}\)
b) So sánh \(\frac{2013+2014}{2014+2015}\) và \(\frac{2013}{2014}+\frac{2014}{2015}\)
a)\(\frac{2013}{2015}< \frac{2014}{2016}\)
b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)
ta có tính chất \(\frac{a}{b}\)>1 suy ra \(\frac{a.m}{b.m}\).........