CMR nếu a+c/b+d=a-c/b-d thì a/b=c/d
CMR :nếu: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)thì a=c hoặc \(a+b+c+d=0\left(c+d\ne0\right)\)
Ta có : a+b/b+c = c+d/d+a
=> (a+b)/(c+d)= (b+c)/(d+a)
=> (a+b)/(c+d)+1=(b+c)/(d+a)+1
hay: (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a)
- Nếu a+b+c+d khác 0 thì : c+d=d+a => c=a
- Nếu a+b+c+d = 0 (điều phải chứng minh)
Chứng minh nếu (a + b + c + d)(a - b - c + d) = (a - b + c - d)(a + b - c - d) thì ad = bc
B1.Cho hai số hữu tỉ a/b và c/d (b>0;d>0) chứng tỏ rằng:
Nếu a/b > c/d thì ad < bc
Nếu ad < bc thì a/b < c/d
B2.
a) chứng tỏ rằng nếu a/b < c/d (b>0;d>0) thì a/b < a+c/b+d < c/d
b) hãy viết bốn số hữu tỉ xen giữa -1/2 và -1/3
Chứng minh rằng nếu a/b<c/d(b, d>0) thì: a/b<a+c/b+d<c/d
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
Có:
\(\frac{ab+ad}{b\left(b+d\right)}< \frac{ab+bc}{b\left(b+d\right)}\)\(\Rightarrow\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)\(\Rightarrow\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Chứng minh rằng nếu có
(a + b + c + d)(a - b - c + d) = (a - b + c - d)(a + b - c -d) thì bốn số a, b, c, d lập thành 1 tỉ lệ thức.
Bài.1.Cho 2 số hữu tỉ\(\frac{a}{b}\)và\(\frac{c}{d}\)(b>0,d>0) chứng tỏ rằng
a)Nếu\(\frac{a}{b}\)<\(\frac{c}{d}\) thì a,d<b,c
b)Nếu a,d<b,c thì\(\frac{a}{b}\)<\(\frac{c}{d}\)
Bài.2.Chứng tỏ rằng nếu \(\frac{a}{b}\)<\(\frac{c}{d}\)(b>0,d>0)
Thì \(\frac{a}{b}\)<\(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
a) phải là a.d<b.c
chứ ko phải a,d<b,c đâu
Nếu 0<a<b<c<d<e<f và (a-b)(c-d)(e-f) x=(b-a)(d-c)(f-e) thì x=?
Vì (a-b) đối (b-a)
(c-d) đối (d-c)
(e-f) đối (f-e)
=> (a-b)(c-d)(e-f) đối (b-a)(d-c)(f-e)
=> (a-b)(c-d)(e-f).(-1)=(b-a)(d-c)(f-e)
Chúc bạn học giỏi nha!!!
Chứng minh:
Nếu a/b<c/d thì a/b < m*n+n*c/m*b+n*d<c/d
a) chứng tỏ rằng nếu a/b < c/d ( b > 0 , d > 0 ) thì a/b <a+c/b+d<c/d
b) hãy viết 3 số hữu tỉ xen giữa -1/3 và -1/4