Tìm GTNN của \(B=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}\)
Cho x, y > 0. Tìm GTNN của biểu thức \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^{2}+y^{2}}\)
@AZM: Thật không may dấu "=" không xảy ra bạn nhé :))
Ta có:\(S=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)
Đặt \(a=\frac{x^2+y^2}{xy}\ge\frac{2\sqrt{x^2y^2}}{xy}=2\)
Khi đó:\(S=a+\frac{1}{a}=\left(\frac{a}{4}+\frac{1}{a}\right)+\frac{3a}{4}\ge2\sqrt{\frac{a}{4}\cdot\frac{1}{a}}+\frac{3\cdot2}{4}=\frac{5}{2}\)
Đẳng thức xảy ra tại x=y
Bài làm:
Ta có: \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{\left(x^2+y^2\right)}{xy}.\frac{xy}{\left(x^2+y^2\right)}}=2.1=2\)
Dấu "=" xảy ra khi: \(x=y\)
Vậy GTNN biểu thức là 2 khi \(x=y\)
Học tốt!!!!
Dạ đây là bất đẳng thức Cô-si ạ, bạn có thể chứng minh bằng cách sau:
Ta có: \(\left(x-y\right)^2\ge0\left(\forall xy\right)\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2+4xy\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\sqrt{\left(x+y\right)^2}\ge\sqrt{4xy}\)
\(\Leftrightarrow x+y\ge2\sqrt{xy}\)
Bạn áp dụng bất đẳng thức trên vào bài làm là được ạ!
Bài 1:Cho x>0;y>0 và \(x+y\le1\) tìm GTNNc của các bt sau
a,\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
\(b,B=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
Bà 2:Cho x+y=1 tìm GTNN của bt
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Bài 3:Cho x+y+z=3
a,Tìm GTNN của bt \(A=x^2+y^2+z^2\)
b,Tìm GTLN của bt \(B=xy+yz+xz\)
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
2/
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(1+\frac{4}{x+y}\right)^2}{2}=\frac{25}{2}\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Cho x,y >0 và \(^{\left(x+y-1\right)^2}\)= xy .
Tìm GTNN của P = \(\frac{1}{x^2+y^2}+\frac{1}{xy}+\frac{\sqrt{xy}}{x+y}\)
1) Cho x, y các số dương thỏa mãn x + y + xy = 8. Tìm GTNN của biểu thức P= x2 + y2
2) Cho x, y > 0, x + y = 1. Tìm GTNN của \(N=\frac{1}{x^2+y^2}+\frac{1}{xy}\)
3) Cho x, y, z là các số dương. Chứng minh rằng: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Cho các số nguyên dương x, y thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\). Tìm GTNN của
a) A = xy
b) B = x + y
áp dùng BDT cô si chúa Pain có
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\Rightarrow xy\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge2.\)
mà \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)
\(\Rightarrow\frac{xy}{2}\ge\Rightarrow xy\ge4\)
b)
áp dụng BDT cô si ta có
\(x+y\ge2\sqrt{xy}\)
lấy từ câu A ta có \(xy\ge4\) " câu a"
suy ra
\(x+y\ge2\sqrt{4}=4\)
Cho các số thực x ; y thỏa mãn \(\left(x+y-1\right)^2=xy\)
Tìm GTNN của biểu thức \(P=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\)
Cho các số thực x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức
P= \(\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\)
Cho x y z > 0 . Tìm GTNN của \(P=\frac{x^2}{y^2+yz+z^2}+\frac{y^2}{z^2+zx+x^2}+\frac{z^2}{x^2+xy+y^2}\)
\(P=\frac{x^4}{x^2y^2+x^2yz+z^2x^2}+\frac{y^4}{y^2z^2+xzy^2+x^2y^2}+\frac{z^4}{z^2x^2+xyz^2+y^2z^2}\)
ÁP DỤNG BĐT CAUCHY - SCHWARZ TA ĐƯỢC:
=> \(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2y^2+y^2z^2+z^2x^2\right)+xyz\left(x+y+z\right)}\) (1)
TA SẼ CHỨNG MINH: \(\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2y^2+y^2z^2+z^2x^2\right)+xyz\left(x+y+z\right)}\ge1\) (2)
<=> \(x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)+xyz\left(x+y+z\right)\)
<=> \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\) (*)
TA ÁP DỤNG LIÊN TỤC 2 LẦN DẠNG BĐT SAU: \(\alpha^2+\beta^2+\gamma^2\ge\alpha\beta+\beta\gamma+\alpha\gamma\)
KHI ĐÓ TA SẼ ĐƯỢC: \(\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
VẬY BĐT (*) LÀ LUÔN ĐÚNG.
=> TỪ (1) VÀ (2) => \(P\ge1\)
DẤU "=" XẢY RA <=> \(x=y=z\)
VẬY P MIN = 1 <=> x = y = z .
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y.\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
\(\Leftrightarrow A=\left[\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}.\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{x+y}{xy}\right]:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)
\(\Leftrightarrow A=\frac{2\sqrt{xy}+x+y}{xy}:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)
\(\Leftrightarrow A=\frac{\sqrt{xy}\left(x+y\right)}{xy\left(\sqrt{x}+\sqrt{y}\right)}\)
\(\Leftrightarrow A=\frac{\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)
sai sót chỗ nào chỉ cho mk nhé. ý kia chốc nx làm nốt