Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đạt Phạm
Xem chi tiết
Mai Phương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 12 2021 lúc 22:12

\(23-y^2=7\left(x-2004\right)^2\ge0\\ \Leftrightarrow y^2\le23\)

Mà \(y\in N\Leftrightarrow y\in\left\{0;1;2;3;4\right\}\)

Với \(y=0\Leftrightarrow7\left(x-2004\right)^2=23\left(loại\right)\)

Với \(y=1\Leftrightarrow7\left(x-2004\right)^2=22\Leftrightarrow\left(x-2004\right)^2=\dfrac{22}{7}\left(loại\right)\)

Với \(y=2\Leftrightarrow7\left(x-2004\right)^2=19\Leftrightarrow\left(x-2004\right)^2=\dfrac{19}{7}\left(loại\right)\)

Với \(y=3\Leftrightarrow7\left(x-2004\right)^2=14\Leftrightarrow\left(x-2004\right)^2=2\left(loại\right)\)

Với \(y=4\Leftrightarrow7\left(x-2004\right)^2=7\Leftrightarrow\left[{}\begin{matrix}x-2004=1\\x-2004=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2005\\x=2003\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2005;4\right);\left(2003;4\right)\)

Phan Đức Anh
Xem chi tiết
hồ nghĩa trường
Xem chi tiết
Lê Song Phương
18 tháng 12 2023 lúc 5:21

Điều kiện đã cho \(\Leftrightarrow7\left(x-2019\right)^2+y^2=23\) (*)

Do \(\left(x-2019\right)^2,y^2\ge0\) nên (*) suy ra \(y^2\le23\Leftrightarrow y^2\in\left\{0,1,4,9,16\right\}\)

\(\Leftrightarrow y\in\left\{0,1,2,3,4\right\}\)

Hơn nữa, lại có \(y^2=23-7\left(x-2019\right)^2\). Ta thấy \(VP\) chia 7 dư 2.

\(\Rightarrow y^2\) chia 7 dư 2 \(\Rightarrow y\in\left\{3,4\right\}\)

Xét \(y=3\) \(\Rightarrow7\left(x-2019\right)^2=14\) \(\Leftrightarrow\left(x-2019\right)^2=2\), vô lí.

Xét \(y=4\Rightarrow7\left(x-2019\right)^2=7\) \(\Leftrightarrow\left(x-2019\right)^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=2018\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(4;2020\right),\left(4;2018\right)\right\}\) thỏa mãn ycbt.

Mai Nguyên
Xem chi tiết
Đinh Thùy Linh
28 tháng 6 2016 lúc 8:54

\(\Leftrightarrow7\left(x-2004\right)^2=23-y^2\)(1)

Vì \(y^2\ge0\forall y\Rightarrow23-y^2\le23\forall y\)

\(\Rightarrow7\left(x-2004\right)^2\le23\)

\(\Rightarrow\left(x-2004\right)^2\le\frac{23}{7}< 4\)

Mà \(\left(x-2004\right)^2\ge0\forall x\Rightarrow0\le\left(x-2004\right)^2< 4\)

Trong đoạn [0;4) chỉ có 2 số chính phương là 0 và 1 nên:

Nếu x-2004=0 => y2 = 23 - không có y thuộc N thỏa mãn.Nếu (x-2004)2 = 1 thì x = 2005 hoặc x = 2003. Khi đó y2 = 16 mà y thuộc N nên y = 4.

Vậy có 2 nghiệm TM PT là (x=2003;y=4) và (x=2005;y=4).

Jin Air
28 tháng 6 2016 lúc 9:00

7(x-2004)^2 >= 0

-> 23 - y^2 >= 0. Suy ra y^2 <= 23

Ta có: 7(x-2004)^2= 23-y^2 -> 23-y^2 chia hết 7. Tức 23-y^2 là bội của 7. 

Các bội của 7 < 23 là: 0;7;14;21. => y^2={23;16;9;2}

Mà y là số tự nhiên nên y^2={16;9} nên y=4 hoặc 3

Chia 2 trường hợp

-Nếu y=4:

7(x-2004)^2=23-y^2

7(x-2004)^2=23-16

7(x-2004)^2=7 => (x-2004)^2=1 thì x-2004=1 hoặc -1. Suy ra x=2005 hoặc 2003

-Nếu y=3:

7(x-2004)^2=23-y^2

7(x-2004)^2=23-9

7(x-2004)^2=14 => (x-2004)^2=2. Không tồn tại trường hợp này vì ko có số tự nhiên nào có bình phương=2

vậy có 1 trường hợp: y=4 và x={2003;2005}

Chúc bạn học tốt

Đoàn Khánh Linh
2 tháng 11 2017 lúc 5:40

Có 7(x-2004)^2 >0

Mà 7(x-2004)^2=23-y^2

Suy ra 23-y^2>0

Suy ra y^2<23

Y^2=0,1,4,9,16

Y=0,+-1,+-2,+-3,+-4

TH1)y^2=0,y=0

Suy ra 7(x-2004)^2=23-0    Suy ra (x-2004)^2=23/7(loại)

TH2)Y^2=1,y=+-1

Suy ra 7(x-2004)^2=23-1            Suy ra (x-2004)^2=22/7(loại)

TH3)y^2=4,y=+-2

Suy ra 7(x-2004)^2=23-4      Suy ra (x-2004)^2=21/7=3(loại)

TH4)Y^2=9,y=+-3     

Suy ra   7(x-2004)^2=23-9           Suy ra (x-2004)^2=14/2=2(Loại)

TH5)y^2=16,y=+-4

Suy ra 7(x-2004)^2=23-16           Suy ra (x-2004)^2=7/7=1

Suy ra x-2004=1                               Hoặc                x-2004=-1

x=2005                                                                    x=2003

Vậy y=+-4,x={2003,2005}        

thoa nguyen
Xem chi tiết
Kiều Vũ Linh
3 tháng 6 2023 lúc 17:04

a) 15/5 < 18/5 < 20/5

3 < 18/5 < 4

Vậy x = 3; y = 4

b) 28/7 > 23/7 > 21/7

4 > 23/7 > 3

Vậy x = 4; y = 3

Ly Bếu 2k7
Xem chi tiết
Trần Tiến Pro ✓
18 tháng 10 2018 lúc 9:33

22 . x + 2y = 2013

=> 4 . x + 4 = 2013

=> 4x = 2009

=> x = 502,25

Trần Tiến Pro ✓
18 tháng 10 2018 lúc 9:35

y = 2 nữa nhé mik bị thiếu

Huỳnh Quang Sang
18 tháng 10 2018 lúc 9:37

\(2^2\cdot x+2^y=2013\)   => Thay thế y= 2

\(\Rightarrow4\cdot x+2^2=2013\)

\(\Rightarrow4\cdot x+4=2013\)

\(\Rightarrow4\cdot x=2013-4\)

\(\Rightarrow4\cdot x=2009\)

\(\Rightarrow x=\frac{2009}{4}=502,25\)

Vậy x = 502,25

Hoàng Xuân	Phương
Xem chi tiết
Đoàn Đức Hà
2 tháng 6 2021 lúc 16:05

\(7\left(x-2017\right)^2+y^2=23\Rightarrow7\left(x-2017\right)^2\le23\Leftrightarrow\left(x-2017\right)^2\le\frac{23}{7}\)

mà \(x\inℕ\Rightarrow\orbr{\begin{cases}x-2017=0\\x-2017=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2017\\x=2018\end{cases}}\)

Với \(x=2017\)thì \(y^2=23\)không có nghiệm tự nhiên.

Với \(x=2018\)thì \(7+y^2=23\Leftrightarrow y^2=16\Leftrightarrow y=4\)(vì \(y\inℕ\))

Vậy ta có nghiệm \(\left(x,y\right)=\left(2018,4\right)\).

Khách vãng lai đã xóa
Hanh Nguyen
Xem chi tiết