tìm x,y thuộc Z biết
a, x/7=9/y và x>y
b, -2/x=y/5 và x < 0 < y
Bài 3: Tìm x,y,z biết
a) x : y : z =4: 3 :9 và x - 3y + 4z = 62
c) x : y : z = 1 : 2 : 3 và 4x - 3y + 2z = 36
e) x : y : z = 2 : 3 : 4 và x + 2y - 3z = -20
g) x : y : (- z ) = 3 : 8 : 5 và 4x + 3y + 2z = 52
i) x : y : z = 3 : 5 : (-2) và 5x - y + 3z = 124
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
tìm x, y, z biết
a) 3x =7y và x - y = -16
b) x/6 = y/5 và x + 2y = 20
c) x/2 = y/-3 = z/5 và 2x + 3y + 5z =6
d) x/2 =y/3 , y/4 = z/5 và x + y -z =10
e) x/3 = y/4 = z/2 và x^3 - y^3 + z^3
a: 3x=7y
=>x/7=y/3=(x-y)/(7-3)=-16/4=-4
=>x=-28; y=-12
b: x/6=y/5
=>x/6=2y/10=(x+2y)/(6+10)=20/16=5/4
=>x=30/4=15/2; y=25/4
c: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot2+3\cdot\left(-3\right)+5\cdot5}=\dfrac{6}{20}=\dfrac{3}{10}\)
=>x=3/5; y=-9/10; z=3/2
d: x/2=y/3
=>x/8=y/12
y/4=z/5
=>y/12=z/15
=>x/8=y/12=z/15
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
=>x=16; y=24; z=30
1. Tìm x,y thuộc Z biết:
a,\(\frac{x}{7}=\frac{9}{y}\)và x > y
b,\(\frac{-2}{x}=\frac{y}{5}\)và x<0<,y.
2.Tìm x,y thuộc Z biết:
\(\frac{x-4}{y-5}=\frac{4}{3}\)và x - y =5
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
câu c mk nhầm đề sr bạn nha
\(\frac{y+5-4}{y-5}=\frac{4}{3}\Rightarrow3y+3=4y-5\Rightarrow y=8\Rightarrow x=13\)
tìm x, y, z biết
a) x/5 = y/2 = z/-3 và xyz = 240
b) x/3 = y/4 = z/2 và x^3 - y^3 + z^3 = -29
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{-3}=\dfrac{x.y.z}{5.2.-3}=\dfrac{240}{-30}=-8\)
\(\Rightarrow\dfrac{x}{5}=-8\Rightarrow x=-8.5=-40\)
\(\Rightarrow\dfrac{y}{2}=-8\Rightarrow y=-8.2=-16\)
\(\Rightarrow\dfrac{z}{-3}=-8\Rightarrow z=-8.-3=24\)
Vậy \(x=--40;y=-16\) và \(z=24\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x^3-y^3+z^3}{3^3-4^3+2^3}=\dfrac{-29}{-29}=1\)
\(\Rightarrow\dfrac{x}{3}=1\Rightarrow x=3.1=3\)
\(\Rightarrow\dfrac{y}{4}=1\Rightarrow y=1.4=4\)
\(\Rightarrow\dfrac{z}{2}=1\Rightarrow z=1.2=2\)
Vậy \(x=3;y=4\) và \(z=2\)
Bài 1 tìm x Thuộc Z biết
a)x / 7 = 9 / y và x>y
b)-2 / x = y/ 5 và x<0<y
Tim x , y thuộc Z biết
x/7 = 9/y và x > y
-2/x = y/5 và x < 0 < y
tìm 2 số xvaf y, biết
a/ x phần 3 = y phần 5 và x+y =16
b/ x:2=y :(-5) và x-y= -7
a, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=10\end{matrix}\right.\\ b,x:2=y:\left(-5\right)\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)
tìm x biết
a) \(\dfrac{x}{2}\)=\(\dfrac{y}{5}\) và x+y=-14
b)\(\dfrac{x}{7}=\dfrac{y}{5}\) và x-y=8
\(a.\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-2\right)\cdot2=-4\\y=\left(-2\right)\cdot5=-10\end{matrix}\right.\)
\(b.\)
\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{8}{2}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot7=28\\y=5\cdot4=20\end{matrix}\right.\)
1)Tìm x thuộc Z:
a)(x-2)2-9=7
b)/x-2/-9=7
2) Tìm x,y thuộc Z:
a)/x-5/+/y-7/≤0
b)/x+3/+(y+2019)2≤0
1a) (x - 2)2 - 9 = 7
=> (x - 2)2 = 7 + 9
=> (x - 2)2 = 16
=> (x - 2)2 = 42
=> \(\orbr{\begin{cases}x-2=4\\x-2=-4\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=-2\end{cases}}\)
Vậy ...
1b) |x - 2| - 9 = 7
=> |x - 2| = 7 + 9
=> |x - 2| = 16
=> \(\orbr{\begin{cases}x-2=16\\x-2=-16\end{cases}}\)
=> \(\orbr{\begin{cases}x=18\\x=-14\end{cases}}\)
2a) |x - 5| + |x - 7| \(\le\)0
Ta có: |x - 5| \(\ge\)0 \(\forall\)x
|y - 7| \(\ge\) 0 \(\forall\)y
=> |x - 5| + |y - 7| \(\ge\)0 \(\forall\)x,y
+) Với |x - 5| + |y - 7| = 0
=> \(\hept{\begin{cases}x-5=0\\y-7=0\end{cases}}\)
=> \(\hept{\begin{cases}x=5\\y=7\end{cases}}\)
+) Với |x - 5| + |y - 7| < 0
=> ko có giá trị x,y nào thõa mãn