Cho ABC nhọn nội tiếp(0;R) (AB<AC). Ba cao AD,BE,CF gặp nhau tại H.Chứng minh:
a/tg BFEC nội tiếp. Xác định tâm I của đường tròn này
b/ AO cắt (0) tại K. Com:EF.AK=AH.BC
c/ gọi J là trung điểm AH. Tính S của JEIF theo R khi góc BAC=45°
Cho tam giác ABC nhọn (AB bé hơn AC) nội tiếp (0). Bẽ bán kính OD vuông góc với dây BC tại I. Tiếp tuyến (0) tại C và cắt D tại M
A)cmr : tứ giác ODMC nội tiếp
B)cm: góc BAD bằng DCM
đây là 1 bài tương tự! bn tham khảo thôi nha!k cho mình nhé!
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o các đường cao bd ce a cm ADE đồng Dạng ABC b kẻ tiếp tuyến Ax vs đường tròn (0) . Chứng minh rằng ax//de
a: Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
mà góc A chung
nên ΔAED đồng dạng với ΔABC
b: góc xAC=góc ABC
góc ABC=góc ADE
=>góc xAC=góc ADE
=>Ax//DE
Cho tam giác abc có ba góc nhọn, nội tiếp đường tròn. Hai đường cao BE và CF của tgiac abc cắt nhau tại H
a) Chứng minh tứ giác BFEC nội tiếp
b) Tia BE cắt (0) tại P, tia CF cắt (0) tại Q. Chứng minh góc FEB = FCB và EF // với PQ
c) Cm OA vuông góc với PQ
d) Tính bán kính đường tròn ngoại tiếp tgiac EFH theo R khi BC = R căn 3
GIÚP MÌNH CÂU D NHANH NHÉ, MÌNH CẢM ƠN NHIỀU!!!
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn 0. Kẻ các đường cao AF và CE của tam giác ABC cắt nhau tại H:
a) Chứng minh tứ giác AEFC nội tiếp đường tròn.
b) Kẻ đường kính AK của đường tròn 0. Chứng minh tam giác ABK đồng dạng với tam giác AFC
tứ giác AECF có góc AEC=AFC là 2 góc kề nhìn cạnh AC nên nt đg tròn
b) ta có : góc ABK =0,5 sđ cung AK=90 độ
xet tam giac ABK và AFC có
góc ABK=góc AFC=90 độ
goc AKB =góc ACF (GÓC NT CHAN CUNG AB)
=>Tam giác ABK đồng dạng vs tam giác AFC(G.G)
Tứ giác AECF có góp AEC=ACF laf2 góc kề nhìn cạnh AC nên nối tiếp đường tròn
B)Ta có:Góc ABK=0,5 sđ cùng AK=90 độ
Xét tam giác ABK
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn O. Hai đường cao AD, BE cắt nhau tại H. Chứng minh tứ giác ABDE nội tiếp đường tròn
Cho tam giác ABC có 3 gó nhọn , nội tiếp đường tròn O . Hai đường cao AD,BE cắt nhau tại H
a, chứng minh tứ giác ABDE nội tiếp đường tròn
b, Tia AO cắt đương tròn O tại K . Chứng minh tứ giác BHCK là hình bình hành
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB<AC) 3 đường cao AD,BE,CF cắt nhau tại H
a,CM tứ giác BFEC nội tiếp và xác định tâm I
b,Đường thẳng EF cắt đường thẳng BC tại K . CM KF.KE=KB.KC
c,AK cắt (O) tại M. CM MFEA nội tiếp
jup mình vs ạ
Cho tam giác nhọn ABC nội tiếp (O; R). Diện tích của tam giác ABC bằng
A. 1 2 R 2 sin 2 A + sin 2 B + sin 2 C
B. 1 2 R 2 sin A + sin B + sin C
C. R 2 sin 2 A + sin 2 B + sin 2 C
D. R 2 sin A + sin B + sin C
Ta có: B O C ^ = 2 B A C ^ , C O A ^ = 2 C B A ^ , A O B ^ = 2 A C B ^
( góc ở tâm gấp 2 lần số đo góc nội tiếp cùng chắn 1 cung )
S = S O A B + S O B C + S O C A
= 1 2 O A . O B . sin A O B ^ + 1 2 O B . O C . sin B O C ^ + 1 2 O C . O A . sin C O A ^
S = 1 2 R 2 sin 2 A + sin 2 B + sin 2 C .
ĐÁP ÁN A
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O , các đường cao BD và CE. Chứng minh rằng tứ giác BCDE nội tiếp
Xét tứ giác BCDE có
\(\widehat{BDC}=\widehat{BEC}=90^0\)
hay BCDE là tứ giác nội tiếp
Cho tam giác ABC nhọn nội tiếp (O) có góc BAC =60, H là trực tâm. Goi I là tâm đường tròn nội tiếp tam giác ABC. Chung minh IO =IH
1.Cho tam giác ABC nhọn. Kẻ các đường cao BD, CE cắt nhau tại H. Chứng mình rằng: a,AEHD là tứ giác nội tiếp b,BEDC là tứ giác nội tiếp. Tìm tâm đường tròn ngoại tiếp c, Góc EBD=ECD d,AH vuông góc với BC
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao BM và CN cát nhau tại I. Chứng minh rằng: a,AMIN là một tứ giác nội tiếp b, Góc NAI=NMI c,AI cắt BC tại H. Chứng minh HA là tia phân giác của góc NHM
1:
a: góc AEH+góc ADH=180 độ
=>AEHD nội tiếp
b: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
c: BEDC nội tiếp
=>góc EBD=góc ECD
d: Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC