Trên mặt phẳng tọa độ Oxy, cho \(\Delta ABC\)với A(3;-1), B(5;-4), C(6;1). Tìm tọa độ điểm K có tung độ bằng 2 sao cho \(\overrightarrow{BK}.\overrightarrow{KA}=KA^2-AC^2\)
CÁC BÁC ƠI ! GIÚP EM VỚI ☘
Trong mặt phẳng Oxy cho 2 điểm A(4;1) và B(0;-2)
a, Tính tọa độ của vectơ \(\overrightarrow{BA}\)
b, Tìm tọa độ điểm C sao cho \(\Delta\)ABC \(\perp\)C
Trên mặt phẳng Oxy cho A(1; 3) ; B(3; -3)
a,Tìm tọa độ trung điểm I của đoạn thẳng AB.
b.Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại C.
Trong mặt phẳng tọa độ $Oxy$ cho $\Delta ABC$ với $A\left( 4;3 \right),B\left( 2;7 \right),C\left( -3;-8 \right)$.
a) Viết phương trình tổng quát cạnh $BC$.
b) Viết phương trình đường tròn $\left( C \right)$ ngoại tiếp $\Delta ABC$.
1.Trong mặt phẳng tọa độ Oxy cho hình bình hành ABCD với A (- 6;1); B (2;2) C (1;5) tọa độ đỉnh D là:
A. (5;2)
B. (-7;4)
C. (5;4)
D. (7;-4)
2.Trong mặt phẳng tọa độ Oxy cho tam giác ABC với A (- 1;3); B (2;1) C (5;5) tọa độ đỉnh D là của hình bình hành ABCD:
A. (0;4)
B. (8;1)
C. (8;3)
D. (-8;3)
Hướng dẫn em cách làm với ạ. Em cảm ơn nhiều.
1, Gọi tọa độ điểm D(x;y)
Ta có:\(\overrightarrow{AB}\left(8;1\right)\)
\(\overrightarrow{DC}\left(1-x;5-y\right)\)
Tứ giác ABCD là hình bình hành khi
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow1-x=8;5-y=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)
Vậy tọa độ điểm D(-7;4)
Trên mặt phẳng tọa độ Oxy cho 3 điểm A(0;2);B(-2;1);C(1;4) gọi G(xG;yG) là trọng tâm của \(\Delta ABC\)
khi đó xG+yG=?
Trên mặt phẳng tọa độ Oxy cho ba điểm A(1;4),B(-3;-4),C(1;0). Tính diện tích tam giác ABC.
Ta có :
AB = \(\sqrt{\left(1+3\right)^2+\left(4+4\right)^2}=4\sqrt{5}\)
AC = \(\sqrt{\left(1-1\right)^2+\left(4-0\right)^2}=4\)
BC = \(\sqrt{\left(-3-1\right)^2+\left(-4-0\right)^2}=4\sqrt{2}\)
=> p = \(\frac{4\sqrt{5}+4+4\sqrt{2}}{2}\)
=> \(S_{\Delta ABC}=\sqrt{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}=\sqrt{64}=8\)
( TÍNH THEO CÔNG THỨC HERON )
Ta có :
AB = √(1+3)2+(4+4)2=4√5
AC = √(1−1)2+(4−0)2=4
BC = √(−3−1)2+(−4−0)2=4√2
=> p = 4√5+4+4√22
=> SΔABC=√p(p−AB)(p−AC)(p−BC)=√64=8
Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng có phương trình lần lượt là (d): x+y-2=0 và (\(\Delta\)): 4x-2y+6=0. tìm tọa độ các đỉnh hình vuông ABCD biết A nằm trên (d) và B nằm trên (\(\Delta\)), tâm I(\(\frac{1}{2};\frac{3}{2}\))
Trên mặt phẳng tọa độ Oxy, cho tam giác ABC với tọa độ các đỉnh là A(1; 2), B(3; 4), C(6; 1). Phương trình đường thẳng chứa đường cao AH của tam giác đó có hệ số góc là
duong thang di qua BC la y=-1x+7
=> he so can tim la 1
Trên mặt phẳng tọa độ Oxy cho tam giác ABC có A(1;3) , B(-2;1) và C(0;3).
Vec tơ \(\overrightarrow{AB}+\overrightarrow{AC}\) có tọa độ là
\(\overrightarrow{AB}=\left(-3;-2\right)\)
\(\overrightarrow{AC}=\left(-1;0\right)\)
\(\overrightarrow{AB}+\overrightarrow{AC}=\left(-4;-2\right)\)