Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có tâm I(2;1), bán kính R=2 và điểm
M(1;0). Viết phương trình đường thẳng d đi qua điểm M sao cho d cắt (C) tại hai điểm A và B, đồng thời ∆IAB có diện tích bằng 2 .
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A − 4 ; 1 , B 2 ; 4 , C(2; -2). Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác đã cho.
A. I 1 4 ; 1 .
B. I - 1 4 ; 1 .
C. I 1 ; 1 4 .
D. I 1 ; - 1 4 .
Gọi I( x; y). Ta có A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .
Do I là tâm đường tròn ngoại tiếp tam giác ABC nên I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2
⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 y − 4 2 = y + 2 2 ⇔ x + 4 2 = x − 2 2 + ( 1 − 4 ) 2 y = 1 ⇔ x 2 + 8 x + 16 = x 2 − 4 x + 4 + 9 y = 1 ⇔ x = − 1 4 y = 1 .
Chọn B.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(- 4;1); B(2; 4); C(2; -2). Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác đã cho.
A. I 1 4 ; 1 .
B. I − 1 4 ; 1 .
C. I 1 ; 1 4 .
D. I 1 ; − 1 4 .
Gọi I(x, y). Ta có A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .
Do I là tâm đường tròn ngoại tiếp tam giác ABC nên:
I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2
⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 = x − 2 2 + 9 y = 1 ⇔ x = − 1 4 y = 1 .
Chọn B.
Trong mặt phẳng tọa độ Oxy, đường tròn (C) có tâm I(-4;3), tiếp xúc trục Oy có phương trình là:
Trong mặt phẳng tọa độ Oxy, đường tròn (C) có tâm I(-4;3), tiếp xúc trục Oy có phương trình là
A. x 2 + y 2 - 4 x + 3 y + 9 = 0
B. x + 4 2 + y - 3 2 = 16
C. x - 4 2 + y + 3 2 = 16
D. x 2 + y 2 + 8 x - 6 y - 12 = 0
Trong mặt phẳng tọa độ Oxy, đường tròn (C) tâm I(-3;4), bán kính R = 6 có phương trình là:
A. (x + 3 ) 2 + (y - 4 ) 2 = 36
B. (x - 3 ) 2 + (y + 4 ) 2 = 6
C. (x + 3 ) 2 + (y - 4 ) 2 = 6
D. (x - 3 ) 2 + (y + 4 ) 2 = 36
Chọn A.
Phương trình đường tròn (C) tâm I(-3;4), bán kính R = 6 là:
[x - (-3) ] 2 + (y - 4 ) 2 = 6 2 ⇒ (x + 3 ) 2 + (y - 4 ) 2 = 36
Trong mặt phẳng tọa độ Oxy cho A(-2;2),B(6;6),C(2;-2).
a) Tìm tọa độ trực tâm H của tam giác ABC; tọa độ tâm đường tròn ngoại tiếp I tam giác ABC; tọa độ trọng tâm G của tam giác ABC.
b) Chứng minh : IH=-3IG.
c) Gọi AD là đường kính của đường tròn ngoại tiếp tam giác ABC. Chứng minh tứ giác ABCD là hình bình hành.
mong mn giúp mình với ạ
Trong mặt phẳng tọa độ Oxy, đường tròn tâm I(3;-1) và bán kính R=2 có phương trình là:
A. ( x + 3 ) 2 + ( y - 1 ) 2 = 4
B. ( x - 3 ) 2 + ( y - 1 ) 2 = 4
C. ( x - 3 ) 2 + ( y + 1 ) 2 = 4
D. ( x + 3 ) 2 + ( y + 1 ) 2 = 4
Trong mặt phẳng tọa độ Oxy, đường tròn tâm I(3;-1) và bán kính R=2 có phương trình là:
Trong mặt phẳng tọa độ Oxy cho đường tròn tâm I(2;-2), bán kính R = 4. Viết phương trình đường tròn là ảnh của đường tròn (I;R) qua phép vị tự tâm O, tỉ số 1 2 .
A. x - 4 2 + ( y + 4 ) 2 = 4
B. x - 4 2 + ( y + 4 ) 2 = 64
C. x - 1 2 + ( y + 1 ) 2 = 4
D. x - 1 2 + ( y + 1 ) 2 = 64
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có phương trình: x − 3 2 + y + 1 2 = 9 .
Hãy viết phương trình của đường tròn (C’) là ảnh của (C) qua phép vị tự tâm I(1; 2) tỉ số k = -2
Ta có A(3;−1) là tâm của (C) nên tâm A' của (C') là ảnh của A qua phép vị tự đã cho. Từ đó suy ra A′ = (−3;8). Vì bán kính của (C) bằng 3, nên bán kính của (C') bằng |−2|.3 = 6
Vậy (C') có phương trình: x + 3 2 + y − 8 2 = 36 .