Cho b, c là các số khác 0 thỏa mãn đồ thị hàm số \(y=x^2+bx+c\) đi qua điểm A (1;0) và có đỉnh I có tung độ bằng -1. Khi đó giá trị b.c = ...
tìm m thỏa mãn yêu cầu bài toán
a) đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) có đường tiệm cận đứng đi qua điểm M (3;-1)
b) đường thẳng x = -2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)
c) biết đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\) có tiệm cận đứng là x = 2 và tiệm cận ngang y = 3. Tính 2a+3b
d) đồ thị hàm số \(y=\dfrac{x+2}{x^2+2x+m^2-3m}\) có 2 đường tiệm cận đứng
a: \(\lim\limits_{x\rightarrow-\dfrac{3m}{2}}\dfrac{x+3}{2x+3m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\dfrac{3m}{2}}2x+3m=0\\\lim\limits_{x\rightarrow-\dfrac{3m}{2}}x+3=\dfrac{-3m}{2}+3\end{matrix}\right.\)
=>x=-3m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\)
Để tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) đi qua M(3;-1) thì \(-\dfrac{3m}{2}=3\)
=>-1,5m=3
=>m=-2
b: \(\lim\limits_{x\rightarrow-m}\dfrac{2x-3}{x+m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-m}2x-3=-2m-3\\\lim\limits_{x\rightarrow-m}x+m=0\end{matrix}\right.\)
=>x=-m là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)
Để x=-2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\) thì -m=-2
=>m=2
c: \(\lim\limits_{x\rightarrow\dfrac{2}{b}}\dfrac{ax+1}{bx-2}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow\dfrac{2}{b}}ax+1=a\cdot\dfrac{2}{b}+1\\\lim\limits_{x\rightarrow\dfrac{2}{b}}bx-2=b\cdot\dfrac{2}{b}-2=0\end{matrix}\right.\)
=>Đường thẳng \(x=\dfrac{2}{b}\) là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\)
=>2/b=2
=>b=1
=>\(y=\dfrac{ax+1}{x-2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow+\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)
=>Đường thẳng y=a là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{ax+1}{x-2}\)
=>a=3
cho hàm số y = ax^2 + bx + c(a khác 0). tìm a, b, c biết hàm số đó có gtln = 5 khi x = -2 và đồ thị đi qua M(1;-1)
\(y=ax^2+bx+c\left(d\right)\)
Do y có gtln là 5 khi x=-2
\(\Rightarrow\left\{{}\begin{matrix}5=a\left(-2\right)^2+b\left(-2\right)+c\\-\dfrac{b}{2a}=-2\\a< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a-2b+c=5\\4a-b=0\end{matrix}\right.\)
Có \(M\in\left(d\right)\Rightarrow a+b+c=-1\)
Có hệ \(\left\{{}\begin{matrix}4a-2b+c=5\\4a+b=0\\a+b+c=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-2}{3}\\b=-\dfrac{8}{3}\\c=\dfrac{7}{3}\end{matrix}\right.\)(tm)
Vậy...
Cho các số thực a, b, c thỏa mãn a + c > b + 1 a + b + c + 1 < 0 . Tìm số giao điểm của đồ thị hàm số y = x 3 + a x 2 + b x + c và trục Ox
A. 0
B. 2
C. 3
D. 1
Đáp án C
Phương pháp giải:
Chọn hệ số a, b, c hoặc đánh giá tích để biện luận số nghiệm của phương trình
Lời giải:
Cách 1. Ta có:
Lại có có 3 nghiệm thuộc khoảng
Cách 2. Chọn và đồ thị hàm số cắt trục Ox tại 3 điểm phân biệt
Cho a, b, c thỏa mãn - 1 + a - b + c > 0 8 + 4 a + 2 b + c < 0 thì số giao điểm của đồ thị hàm số y = x 3 + a x 2 + b x + c với trục Ox là:
A. 1
B. 2
C. 3
D. 0
Đáp án C.
lim x → - ∞ y = - ∞ ( 1 ) f ( - 1 ) = - 1 + a 2 - b + c > 0 ( 2 ) f ( 2 ) = 8 + 4 a 2 + 2 a + c < 0 ( 3 ) lim x → - ∞ y = + ∞ ( 4 )
Từ (1) và (2) ⇒ Phương trình f (x) = 0 có ít nhất một nghiệm trên - ∞ ; - 1 .
Từ (2) và (3) ⇒ Phương trình f (x) = 0 có ít nhất một nghiệm trên - 1 ; 2 .
Từ (3) và (4) ⇒ Phương trình f (x) = 0 có ít nhất một nghiệm trên 2 ; + ∞ .
Do f (x) =0 là phương trình bậc 3 ⇒ Có nhiều nhất 3 nghiệm
⇒ Đường thẳng cắt trục Ox tại 3 điểm phân biệt.
Cho a, b, c thỏa mãn − 1 + a − b + c > 0 8 + 4 a + 2 b + c < 0 thì số giao điểm của đồ thị hàm số y = x 3 + a x 2 + b x + c với trục Ox là
A. 1
B. 2
C. 3
D. 0
Cho các số thực a, b, c thỏa mãn a − b + c > 1 a + b + c < − 1 . Số giao điểm của đồ thị hàm số y = x 3 + a x 2 + b x + c và trục hoành là
A. 0
B. 1
C. 2
D. 3
Đáp án D.
Đồ thị hàm số cắt trục hoành tại 3 điểm.
Cho các số thực a, b, c thỏa mãn a − b + c > 1 a + b + c < − 1 . Số giao điểm của đồ thị hàm số y = x 3 + a x 2 + b x + c và trục hoành là
A. 0.
B. 1.
C. 2.
D. 3.
Cho hàm số y = ax + b .Tìm a và b, biết rằng đồ thị của hàm số đã cho thỏa mãn một trong các điều kiện sau:
a) Đi qua hai điểm A(1; 3) và B(-1; -1).
b) Song song với đường thẳng y = x + 5 và đi qua điểm C(1; 2).
a) Đồ thị hàm số y = ax + b đi qua A(1; 3) và B(-1; -1)
Vậy a = 2; b = 1; hàm số y = 2x + 1.
b) y = ax + b song song với y = x + 5
⇒ a = 1.
Đồ thị hàm số đi qua C(1; 2) ⇔ 2 = a.1 + b ⇔ a + b = 2 ⇒ b = 1.
Vậy a = 1; b = 1.
Cho hàm số y = ax + b .Tìm a và b, biết rằng đồ thị của hàm số đã cho thỏa mãn một trong các điều kiện sau:
a) Đi qua hai điểm A(1; 3) và B(-1; -1).
b) Song song với đường thẳng y = x + 5 và đi qua điểm C(1; 2).
a) Đồ thị hàm số y = ax + b đi qua A(1; 3) và B(-1; -1)
Vậy a = 2; b = 1; hàm số y = 2x + 1.
b) y = ax + b song song với y = x + 5
⇒ a = 1.
Đồ thị hàm số đi qua C(1; 2) ⇔ 2 = a.1 + b ⇔ a + b = 2 ⇒ b = 1.
Vậy a = 1; b = 1.