Tính giá trị đa thức:
P = \(x^2\)- 3xy +\(2y^2\), tại x = -2; y = 1
Cho đa thức C=9+x^2y-3xy^2-5+3xy^2 A, thu gọn đa thức C B, tính giá trị của C tại x=-1và y=1
C = 9 +x2y - 3xy2 - 5 + 3xy2
C = x2y + 4
Thay x = -1 và y = 1 ta có
C = (-1)2 .1 + 4
C = 4
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
Giúp mình giải bài này:( x^x:mũ số lũy thừa;tiện thể mọi người chỉ mình cách viết số có mũ nha )
1/Thu gọn và tính giá trị đa thức sau tại x=-2,y=4
G= 3x^2y-2xy^2+x^3y^3+3xy^2-2x^2y-2x^3y^3
2/ cho đa thức
A=x^2-3xy-y^2+2x-3y+1 B=-2x^2+xy+2y^2-5x=2y-3
a/tính A+B&A-B
b/ tính giá trị của A&B tại x=-1&y=2
1. G= 3x2y - 2xy2 + x3y3 + 3xy2 - 2x2y - 2x3y3
G = x2y + xy2 - x3y3 = xy (x + y -x2y2) . Khi x= -2 . y=4 ta có G= -2*4( -2 + 4 - (-2)2 * 42 ) = 496
a. B+A =( -2x2 + xy +2y2 -5x +2y - 3) + ( x2 -3xy -y2 +2x -3y +1)= -x2 - 2xy + y2 -3x -y -2
A-B= -( -2x2 +xy + 2y2 -5x +2y -3) + ( x2 -3xy -y2 + 2x -3y +1) = 3x2 -4xy -3y2 +7x -5y +4
Tại x = -1, y =2
A= (-1)2 -3*(-1)*2 -22 +2*(-1) -3*2 +1 = -4
B= -2*(-1)2 + (-1)*2 + 2*22 -5*(-1) + 2*2 -3 = 10
Câu 2 bạn xem lại đề nhé. hình như bạn nhầm đề!
Biết x+y=0,tính giá trị của đa thức sau :
C=2x+2y+3xy(x+y)+5(x^3y^2)+2
D= 3xy(x+y)+2x^3y+2x^2y^2+5
Cho đa thức M= 6x²+3xy-2y², N= 3y²-2x²-3xy. Chứng minh rằng không tồn tại giá trị nào của x và y để 2 đa thức cùng có giá trị âm
Tính giá trị biểu thức
A=\(2x+2y+3xy\left(x+y\right)+5\left(x^3y_{ }^2+x^2y^3\right)\)
tại x+y=0
B=\(3xy\left(x+y\right)+2x^3y+2x^2y^2\)
tại x+y=0
a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)
b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)
\(\Rightarrow\)A=2(x+y)+3xy(x+y)+5x2y2(x+y)
Thay x+y=0 vào A
\(\Rightarrow\)A=0
Cho 2 đa thức M=6x2+3xy-2y2 ; N=3y2-2x2-3xy.
Chứng minh rằng không tồn tại giá trị nào của x để 2 đa thức có cùng giá trị âm
Ta có :
M + N = 6x2 + 3xy - 2y2 + ( 3y2 - 2x2 - 3xy )
= 6x2 + 3xy - 2y2 + 3y2 - 2x2 - 3xy
= 4x2 + y2 ( đoạn này mình làm hơi tắt sry nha)
Do 4x2 + y2 \(\ge\)0
Suy ra : M + N \(\ge\) 0 <=> M và N \(\ge\)0
Do đó không tồn tại giá trị nào của x để 2 đa thức M và N có cùng giá trị âm
Đặt \(X=M+N=4x^2+y^2\)
Vì \(4x^2\ge0\forall x\)
\(y^2\ge0\forall x\)
\(X\ge0\forall x\)
Vậy...
Ta có: \(M+N=\left(6x^2+3xy-2y^2\right)+\left(3y^2-2x^2-3xy\right)\)
\(\Rightarrow M+N=6x^2+3xy-2y^2+3y^2-2x^2-3xy\)
\(\Rightarrow M+N=\left(6x^2-2x^2\right)+\left(3xy-3xy\right)+\left(3y^2-2y^2\right)\)
\(\Rightarrow M+N=4x^2+0+y^2\)
\(\Rightarrow M+N=4x^2+y^2\)
Ta có: \(\hept{\begin{cases}4x^2\ge0\\y^2\ge0\end{cases}}\Rightarrow M+N\ge0\)
Vậy hai đa thức M và N không thể nhận cùng lúc hai giá trị âm
Cho đa thức M= 6x^2+3xy-2y^2
N= 3y^2-2x^2-3xy
CMR không tồn tại giá trị của x, y để M+N có giá trị âm
Cho đa thức M = 6x²+3xy-2y², N= 3y²-2x²-3xy. Chứng minh rằng không tồn tại giá trị nào của x và y để 2 đa thức cùng có giá trị âm
rút gọn biểu thức rồi tính giá trị
3(x-1)(x^2+x+1) +(x-1)^3-4x(x+1)(x-1) tại x =-2
(3xy-2)(9x^2y^2+6xy+4)-3xy(3xy+1)^2 tại x =-2010,y =-1/2010