Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Nhật Huy
Xem chi tiết

Biểu thức đâu hở bạn

Khách vãng lai đã xóa
Tran Le Khanh Linh
7 tháng 4 2020 lúc 16:33

Biểu thức đâu bạn

Khách vãng lai đã xóa
Nguyen Huu Minh Thanh
10 tháng 4 2020 lúc 8:04

Đề đâu??????

Khách vãng lai đã xóa
Kim Tuyến
Xem chi tiết
D-low_Beatbox
9 tháng 6 2021 lúc 19:45

a, ĐKXĐ: x≠±3

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\dfrac{-1}{x^2}\)

b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:

\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4

c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)

Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)

 

Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
D-low_Beatbox
9 tháng 6 2021 lúc 20:18

a, ĐKXĐ: x≠±2

A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

A=\(\left(\dfrac{x}{x^2-4}-\dfrac{2x+4}{x^2-4}+\dfrac{x-2}{x^2-4}\right)\left(\dfrac{x^2+2x}{x+2}-\dfrac{2x+4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)

A=\(\left(\dfrac{-6}{x^2-4}\right)\left(\dfrac{6}{x+2}\right)\)

A=\(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\)

b, |x|=\(\dfrac{1}{2}\)

TH1z: x≥0 ⇔ x=\(\dfrac{1}{2}\) (TMĐKXĐ)

TH2: x<0 ⇔ x=\(\dfrac{-1}{2}\) (TMĐXĐ)

Thay \(\dfrac{1}{2}\)\(\dfrac{-1}{2}\) vào A ta có:

\(\dfrac{-36}{\left(\dfrac{1}{2}-2\right)\left(\dfrac{1}{2}+2\right)^2}\)=\(\dfrac{96}{25}\)

\(\dfrac{-36}{\left(\dfrac{-1}{2}-2\right)\left(\dfrac{-1}{2}+2\right)^2}\)=\(\dfrac{32}{5}\)

c, A<0 ⇔ \(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\) ⇔ (x-2)(x+2)< 0

⇔   {x-2>0        ⇔      {x>2

     [                           [

       {x+2<0                 {x<2

⇔   {x-2<0        ⇔      {x<2

     [                           [

       {x+2>0                 {x>2

⇔ x<2 

Vậy x<2 (trừ -2)

 

 

 

 

Kim Tuyến
Xem chi tiết
28-Nguyễn Hoàng Vinh 7A9
Xem chi tiết
Nguyễn Huy Tú
2 tháng 3 2022 lúc 19:09

a, Thay x = -2 ; y = 3 ta được 

\(A=\dfrac{4\left(-2\right)-5.3}{8\left(-2\right)-7.3}=\dfrac{-8-15}{-16-21}=\dfrac{23}{37}\)

b, Ta có \(\dfrac{x}{y}=\dfrac{5}{4}\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=k\Rightarrow x=5k;y=4k\)

Thay vào ta được \(A=\dfrac{4.5k-5.4k}{8.5k-7.4k}=\dfrac{0}{40k-28k}=0\)

ILoveMath
2 tháng 3 2022 lúc 19:12

undefined

Kim Tuyến
Xem chi tiết
Akai Haruma
6 tháng 7 2021 lúc 17:04

Lời giải:

a.

\(A=\left[\frac{(2+x)^2}{(2-x)(2+x)}+\frac{4x^2}{(2-x)(2+x)}-\frac{(2-x)^2}{(2-x)(2+x)}\right]:\frac{x(x-3)}{x^2(2-x)}\)

\(=\frac{(2+x)^2+4x^2-(2-x)^2}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x(x+2)}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x^2}{x-3}\)

b.

Khi $x=12$ thì $A=\frac{4.12^2}{12-3}=64$

c. 

$A=1\Leftrightarrow \frac{4x^2}{x-3}=1$

$\Leftrightarrow 4x^2=x-3$

$\Leftrightarrow 4x^2-x+3=0$

$\Leftrightarrow (2x-\frac{1}{4})^2=-\frac{47}{16}< 0$ (vô lý)

Vậy không tồn tại $x$

d. Để $A$ nguyên thì $\frac{4x^2}{x-3}$ nguyên

$\Leftrightarrow 4x^2\vdots x-3$

$\Leftrightarrow 4(x^2-9)+36\vdots x-3$

$\Leftrightarrow 36\vdots x-3$

$\Leftrightarrow x-3\in\left\{\pm 1;\pm 2;\pm 3;\pm 4;\pm 9; \pm 12; \pm 36\right\}$

Đến đây bạn có thể tự tìm $x$ được rồi, chú ý ĐKXĐ để loại ra những giá trị không thỏa mãn.

e.

$A>4\Leftrightarrow \frac{4x^2}{x-3}>4$

$\Leftrightarrow \frac{x^2}{x-3}>1$

$\Leftrightarrow \frac{x^2-x+3}{x-3}>0$

$\Leftrightarrow x-3>0$ (do $x^2-x+3>0$ với mọi $x$ thuộc ĐKXĐ)

$\Leftrightarrow x>3$. Kết hợp với đkxđ suy ra $x>3$

 

Phương
Xem chi tiết
Die Devil
3 tháng 7 2017 lúc 8:52

a.Từ giả thiết: 
x+y=1. 
=> (x+y)^3=1^3=1 
=> x^3 +3x^2.y+3x.y^2+y^3=1(HĐT) 
=> x^3+y^3+3xy(x+y)=1 
=> x^3+y^3+3xy.1=1 
<=> x^3+y^3+3xy=1

b.x3-y3-3xy=x3-y3-3xy.1

Mà x-y=1 nên

x3-y3-3xy=x3-y3-3xy(x-y)

x3-y3-3x2y+3xy

=(x-y)3=13=1

Trần Hải Nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 22:55

a: \(A=\left(x+1\right)\left(x-2\right)-x\left(2x-3\right)+2x^2+4\)

\(=x^2-x-2-2x^2+3x+2x^2+4\)

\(=x^2+2x+2\)

Nguyễn Hoàng Minh
22 tháng 10 2021 lúc 22:55

\(a,A=x^2-x-2-2x^2+3x+4+2x^2=x^2+2x+2\\ c,A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\)