cho tam giác abc vuông tại b và góc bac=30 độ; bc=4 . tính bán kính đường tròn ngoại tiếp tam giác abc
Bài 1: Cho tam giác ABC cân tại A. BH là đường vuông góc hạ từ B đến AC. Chứng minh rằng BAC = 2CBH ( BAC và CBH là góc nha)
Bài 2: Cho tam giác ABC cân tại A, góc A= 30 độ. Trên các cạnh AB, AC lấy các điểm Q, P tương ứng sao cho góc QPC = 45 độ và PQ = BC. Chứng minh BC = CQ
Bài 3: Cho tam giác ABC cân tại B có góc B= 30 độ. Kẻ đường vuông góc từ B đến AC, cắt AC tại H. Trên BH lấy điểm D sao cho BD = AC. Chứng minh tam giác ADC đều
1. Cho tam giác ABC cân tại A có góc A = 20 độ. Vẽ D trên nửa mặt phẳng bờ AC không chứa B sao cho tam giác BCD cân tại C và góc BCD = 140 độ. Tính góc ADC
2. Cho tam giác ABC cân tại A có góc BAC = 108 độ. D là điểm nằm trong tam giác ABC sao cho góc DBC = 12 độ, góc DCB = 18 độ. tính góc ADB
3. Cho tam giác ABC cân tại A, A = 100 độ. M nằm trong tam giác ABC sao cho góc MBC = 30 độ, góc MCB = 20 độ. Tính góc MAC
4. Cho tam giác ABC vuông tại A, vẽ AH vuông góc vs BC tại. Biết BH - HC = AC. tính các góc ABC, ACB
cho tam giác ABC vuông ở B có AB=2, góc BAC = 30 độ. Giải tam giác vuông ABC.
Ta có:
\(\widehat{B}=180^o-90^o-30^o=60^o\)(tổng 3 góc trong tam giác)
\(AC=2BC\)(cạnh đối diện góc 30 độ)
Áp dụng định lý Pytago
\(AC^2=BC^2+AB^2\)
\(3BC^2=4\Rightarrow BC=\dfrac{2\sqrt{3}}{3}\)\(\Rightarrow AC=\dfrac{4\sqrt{3}}{3}\)
Cho tam giác ABC vuông tại B, có góc ACB khác 30 độ. Gọi E, F theo thứ tự là trung điểm của BC, AC. Đường phân giác góc BAC cắt EF tại I và cắt BC tại K.
a) CM: tam giác ADH đồng dạng với tam giác BDA
b) CM: KC/KE=AC/IE
c) Qua K kẻ KH vuông góc với AC tại H. CM: tam giác BKH đồng dạng với tam giác AFI
1. Cho tam giác ABC cân tại B. Trong tam giác đó lấy điểm O sao cho góc OAC=10 độ; góc OCA=30 độ. Tính góc ABO
2. Cho tam giác ABC cân tại B có góc BAC=80 độ. Lấy một điểm I trong tam giác sao cho góc IAC=10 độ và góc ICA=30. Tính góc AIB
3. Cho tam giác ABC cân có góc A=100 độ, điểm M nằm trong tam giác sao cho góc MBC=10 độ; MCB=20 độ. Tính góc AMB
Câu hỏi của Nguyễn Vũ Thu Hương - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC cân tại A (góc A nhọn). Vẽ đường phân giác của góc BAC cắt BC tại H:
a) Chứng minh HB=HC VÀ AH vuông góc BC.
b) Với AB=30 cm, BC= 36 cm.Tính độ dài AH.
c) Vể đường trung tuyến BM của tam giác ABC cắt AH tại G.Tính độ dài AG và BM.
1) Cho tam giác ABC vuông tại A. Biết BC=10cm; góc B=30 độ. Trên BC lấy D sao cho góc BAC= 15 độ.
Tính CD
Cho tam giác ABC vuông tại A. Giải tam giác vuông ABC trong các trường hợp sau:
a) BC = 10cm,góc C= 30 độ. b) AB=8cm và góc B=30 độ ?
a: \(\widehat{B}=90^0-30^0=60^0\)
XétΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
nên AB=5cm
=>\(AC=5\sqrt{3}\left(cm\right)\)
b: \(\widehat{C}=90^0-30^0=60^0\)
Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
hay \(BC=16\sqrt{3}\left(cm\right)\)
=>\(AC=8\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại B ,góc ACB=30 độ, AI là tia phân giác của góc BAC , vẽ IH vuông góc với AC tại H .a) chứng minh tam giác ABI bằng tam giác ACI b) xác định hình dạng của tam giác ABH c) HI cắt AB tại K . Chứng tỏ rằng BK=HC d) qua C kẻ đường thẳng song song với HK, cắt AI tại O , tam giác CIO là tam giác gì ? Vì sao ? Giải giúp mik vs mik cần gấp 🥺🥺
a: Xét ΔABI vuông tại B và ΔAHI vuông tại H có
AI chung
\(\widehat{BAI}=\widehat{HAI}\)
Do đó: ΔABI=ΔAHI
b: Ta có: ΔABI=ΔAHI
nên AB=AH
hay ΔABH cân tại A
mà \(\widehat{BAH}=60^0\)
nên ΔABH đều
c: Xét ΔBIK vuông tại B và ΔHIC vuông tại H có
IB=IH
\(\widehat{BIK}=\widehat{HIC}\)
Do đó: ΔBIK=ΔHIC
Suy ra: BK=HC