Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Thu Huyền
Xem chi tiết
tamanh nguyen
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 15:50

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

Nguyễn Trần Nhật Khang
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 1 2022 lúc 10:24

a: AC=8cm

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: AH=4,8cm

nguyễn phương ngọc
Xem chi tiết
Nhan Luu
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 9 2023 lúc 17:52

ΔABC vuông tại A

=>AB^2+AC^2=BC^2

=>BC^2=5^2+12^2=169

=>BC=13

Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC; AB^2=BH*BC; AC^2=CH*CB

=>AH=5*12/13=60/13; BH=5^2/13=25/13; CH=12^2/13=144/13

Akai Haruma
9 tháng 9 2023 lúc 19:10

Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông ta có:
$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{5^2}+\frac{1}{12^2}=\frac{169}{3600}$

$\Rightarrow AH=\frac{60}{13}$ (cm) 

Áp dụng định lý Pitago:

$BH=\sqrt{AB^2-AH^2}=\sqrt{5^2-(\frac{60}{13})^2}=\frac{25}{13}$ (cm) 

$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm) 

Akai Haruma
9 tháng 9 2023 lúc 19:10

Hình vẽ:

thuctran
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 9 2021 lúc 15:36

Áp dụng hệ thức lượng tam giác ABC vuông tại A, đường cao AH

\(AH^2=BH\cdot HC=9\cdot5=45\\ \Rightarrow AH=3\sqrt{5}\left(cm\right)\)

Minh Hiếu
8 tháng 9 2021 lúc 15:37

Áp dụng hệ thức lượng tam giác ABC vuông tại A, đường cao AH

AH^2=BH⋅HC=9⋅5=45⇒AH=3√5(cm)

Hiền Hòa
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 10 2021 lúc 11:52

a, \(\tan B=\dfrac{4}{3}\Leftrightarrow\dfrac{AC}{AB}=\dfrac{4}{3}\Leftrightarrow AC=\dfrac{4}{3}AB\)

Áp dụng PTG: \(AB^2+AC^2=AB^2+\dfrac{16}{9}AB^2=\dfrac{25}{9}AB^2=BC^2=100\)

\(\Leftrightarrow AB^2=36\Leftrightarrow AB=6\left(cm\right)\\ \Leftrightarrow AC=6\cdot\dfrac{4}{3}=8\left(cm\right)\)

\(\tan B=\dfrac{4}{3}\approx\tan53^0\Leftrightarrow\widehat{B}\approx53^0\\ \widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)

b, Vì AM là trung tuyến ứng ch BC nên \(AM=\dfrac{1}{2}BC=5\left(cm\right)\)

Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{48}{10}=4,8\left(cm\right)\)

Ý Như
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 1 2021 lúc 20:01

Câu 1: 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{9^2}+\dfrac{1}{12^2}=\dfrac{1}{81}+\dfrac{1}{144}=\dfrac{25}{1296}\)

\(\Leftrightarrow AH^2=\dfrac{1296}{25}\)

hay \(AH=\dfrac{14}{5}=4.8cm\)

Vậy: AH=4,8cm

Câu 2: 

Ta có: BC=BH+CH(H nằm giữa B và C)

hay BC=5+6=11(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow AB^2=5\cdot11=55\)

hay \(AB=\sqrt{55}cm\)

Vậy: \(AB=\sqrt{55}cm\)

Câu 4:

Không có hàm số nào không phải là hàm số bậc nhất

Trần Bảo Ngọc
Xem chi tiết
trần thị thảo nhi
1 tháng 6 2022 lúc 21:36

Theo HTL:

AH2 = HB . HC 

       = 4 . 9

       = 36

 AH = 6 cm