cho tam giác ABC. I là điểm trên cạnh BC sao cho 2CI=3BI; F là điểm trên BC sao cho 5FB=2FC
a) tính AI, AF theo AB, AC
b) G là trọng tâm tam giác. tính véc tơ AG theo vto AI, AF
Cho tam giác ABC. Gọi I thuộc BC sao cho 2CI = 3BI và J là điểm trên BC kéo dài sao cho 5JB = 2JC. a) Biểu diễn AJ theo AB và AC
\(5\overrightarrow{JB}=2\overrightarrow{JC}=2\left(\overrightarrow{JB}+\overrightarrow{BC}\right)=2\overrightarrow{JB}+2\overrightarrow{BC}\)
\(\Rightarrow\overrightarrow{JB}=\dfrac{2}{3}\overrightarrow{BC}=2\overrightarrow{BA}+2\overrightarrow{AC}\Rightarrow\overrightarrow{BJ}=2\overrightarrow{AB}-2\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}=\overrightarrow{AB}+2\overrightarrow{AB}-2\overrightarrow{AC}=3\overrightarrow{AB}-2\overrightarrow{AC}\)
AI GIẢI GIÚP BÀI NÀY VS Ạ
cho tam giác ABC gọi I là điểm trên cạnh BC sao chỗ 2CI=3BI. gọi J là điểm trên BC kéo dài sao cho 5JB=2JC
a/ tinh vt AJ, vt AI theo vt AB va vt AC
b/ gọi G là trọng tâm tam giác ABC tinhvt AG theo vt AI và vt AG
a) II là điểm trên cạnh BCBC mà: ⇒BICI+BI=23+2⇒BIBC=25⇒BICI+BI=23+2⇒BIBC=25
IC=35BCIC=35BC
JJ là điểm trên BCBC kéo dài: ⇒JBJC−JB=25−2⇒JBBC=23⇒JBJC−JB=25−2⇒JBBC=23
BC=35JCBC=35JC
→AB=→AI+→IBAB→=AI→+IB→
=→AI−25.32→JB=AI→−25.32JB→
=→AI−35(→JA+→AB)=AI→−35(JA→+AB→)
⇒→AB+35→AB=→AI+35→AJ⇒AB→+35AB→=AI→+35AJ→
=→AI+35→BC=AI→+35BC→
=→AI+925(→JA+→AC)=AI→+925(JA→+AC→)
⇒→AC=2516→AI−916→AJ⇒AC→=2516AI→−916AJ→
→AC=2516→AI−916→AJAC→=2516AI→−916AJ→
Trừ vế với vế ta có:
⇒→AJ=53→AB−23→AC
cho tam giác ABC.gọi I là trung điểm cạnh BC sao cho 2CI=3BI .gọi F là điểm trên cạnh BC kéo dài sao cho \(5FB\)=\(2FC\)tính AI,AF theo \(AB\) và \(AC\)
I thuộc BC và 2CI = 3IB ⇒ 2.↑CI + 3.↑BI = ↑0
5.↑AI = 2.↑AI + 3.↑AI = 2(↑AC + ↑CI) + 3(↑AB + ↑BI) = 2.↑AC + 3.↑AB
⇒ ↑AI = (2/5).↑AC + (3/5).↑AB
F thuộc BC kéo dài và 5FB = 2FC ⇒ 5.↑BF - 2.↑CF = ↑0
3.↑AF = 5.↑AF - 2.↑AF = 5(↑AB + ↑BF) - 2(↑AC + ↑CF) = 5.↑AB - 2.↑AC
⇒ ↑AF = (5/3).↑AB - (2/3).↑AC
cho tam giác ABC.gọi I là trung điểm cạnh BC sao cho 2CI=3BI .gọi F là điểm trên cạnh BC kéo dài sao cho 5FB=2FCtính AI,AF theo AB và AC
I thuộc BC và 2CI = 3IB ⇒ 2.↑CI + 3.↑BI = ↑0
⇒ ↑AI = (2/5).↑AC + (3/5).↑AB
F thuộc BC kéo dài và 5FB = 2FC ⇒ 5.↑BF - 2.↑CF = ↑0
⇒ ↑AF = (5/3).↑AB - (2/3).↑AC
Cho tam giác ABC, điểm I nằm trên cạnh BC, sao cho 2CI = 3BI. Gọi J là điểm trên cạnh BC kéo dài sao cho 5JB = 2JC. Gọi G là trọng tâm của tam giác ABC, tính \(\overrightarrow{AG}\) theo \(\overrightarrow{AI}\), \(\overrightarrow{AJ}\).
\(\left\{{}\begin{matrix}2\overrightarrow{CI}=-3\overrightarrow{BI}\\5\overrightarrow{JB}=2\overrightarrow{JC}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2\overrightarrow{CB}+2\overrightarrow{BI}=-3\overrightarrow{BI}\\5\overrightarrow{JB}=2\overrightarrow{JB}+2\overrightarrow{BC}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{BI}=-\frac{2}{5}\overrightarrow{BC}\\\overrightarrow{JB}=\frac{2}{3}\overrightarrow{BC}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}-\frac{2}{5}\overrightarrow{BC}\\\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}=\overrightarrow{AB}-\frac{2}{3}\overrightarrow{BC}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AI}=\overrightarrow{AB}-\frac{2}{5}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\frac{7}{5}\overrightarrow{AB}-\frac{2}{5}\overrightarrow{AC}\\\overrightarrow{AJ}=\overrightarrow{AB}-\frac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\frac{5}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AC}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7\overrightarrow{AB}-2\overrightarrow{AC}=5\overrightarrow{AI}\\5\overrightarrow{AB}-2\overrightarrow{AC}=3\overrightarrow{AJ}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\frac{5}{2}\overrightarrow{AI}-\frac{3}{2}\overrightarrow{AJ}\\\overrightarrow{AC}=\frac{25}{4}\overrightarrow{AI}-\frac{21}{4}\overrightarrow{AJ}\end{matrix}\right.\)
\(\overrightarrow{AG}=\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\frac{1}{3}\left(\frac{5}{2}\overrightarrow{AI}-\frac{3}{2}\overrightarrow{AJ}+\frac{25}{4}\overrightarrow{AI}-\frac{21}{4}\overrightarrow{AJ}\right)=...\)
Cho tam giác abc gọi I là điểm trên cạnh BC sao cho 2CI = 3BI ,gọi F là điểm trên cạnh BC kéo dài sao cho 5FB =2BC a,biểu diễn vecto AI,Af theo vecto AB ,AC b,Gọi o là điểm bất kì . Chứng minh 2oa+ob+oc=4OI
Giúp tui :v
Bài 1 : Cho hình chữ nhật ABCD có AB = 2a,AD = a.Tính độ dài vecto AB + vecto DB
Bài 2 : Cho tam giác ABC gọi I là trung điểm trên cạnh BC sao cho 2CI=3BJ,J trên cạnh BC sao cho 5BJ=2CI.Phân tích vecto AI và AJ theo hai vecto AB,AC
Bài 1:
Gọi M là trung điểm của AD
\(BM=\sqrt{AB^2+AM^2}=\sqrt{4a^2+\dfrac{1}{4}a^2}=\dfrac{\sqrt{17}}{2}a\)
\(\left|\overrightarrow{AB}+\overrightarrow{DB}\right|=2\cdot BM=\sqrt{17}a\)
VÂNG CÁC BÁC, EM HỎI CÁI NÀY CÁC BÁC CHỬI EM NGU EM CŨNG CHẤP NHẬN (VÌ EM NGU VÃI CẢ RA) NHƯNG MÀ CÁC BÁC GIẢI CHI TIẾT HỘ EM VỚI Ạ.
BC là cạnh tam giác ABC. I thuộc BC sao cho 2CI=3BI, J thuộc BC kéo dài sao cho 5JB=2JC.
Câu hỏi : Tại sao 2CI=3BI=>CI=3/5BC
cho tam giác ABC gọi I là điểm trên cạnh BC sao chỗ 2CI=3BI. gọi J là điểm trên BC kéo dài sao cho 5JB=2JC
a/ tinh vt AJ, vt AI theo vt AB va vt AC
b/ gọi G là trọng tâm tam giác ABC tinhvt AG theo vt AI và vt AG
Cho tam giác ABC. Gọi I nằm trên cạnh BC sao cho 2CI=3BI và J nằm trên tia đối của BC sao cho 5JB=2JC. Tính vecto AI và AJ theo \(\overrightarrow{a}=\overrightarrow{AB},\overrightarrow{b}=\overrightarrow{AC}\)
\(3\overrightarrow{BI}=2\overrightarrow{IC}\Rightarrow3\overrightarrow{BI}=2\overrightarrow{IB}+2\overrightarrow{BC}\Rightarrow\overrightarrow{BI}=\frac{2}{5}\overrightarrow{BC}\)
\(5\overrightarrow{JB}=2\overrightarrow{JC}\Leftrightarrow5\overrightarrow{JB}=2\overrightarrow{JB}+2\overrightarrow{BC}\Rightarrow\overrightarrow{JB}=\frac{2}{3}\overrightarrow{BC}\)
\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+\frac{2}{5}\overrightarrow{BC}=\overrightarrow{AB}+\frac{2}{5}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\frac{3}{5}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\)
\(\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}=\overrightarrow{AB}-\frac{2}{3}\overrightarrow{BC}=\overrightarrow{AB}-\frac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\frac{5}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AC}\)