Cho tam giác ABC vuông tại A có đường cao AH . Biết BH=10cm; CH=42cm. Tính độ dài của vectơ AB
* Cho tam giác ABC vuông tại A có đường cao AH. Biết BH=10cm, CH =42cm. Tính BC, AH, AB và AC
cho tam giác ABC vuông tại A , đường phân giác AD đường cao AH . biết BD=7,5cm , CD=10cm ,tính AH , BH , DH
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
hay \(AB=\dfrac{3}{4}AC\)
Ta có: BD+CD=BC
nên BC=17,5cm
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=\dfrac{1225}{4}\)
\(\Leftrightarrow AC^2=196\)
hay AC=14cm
\(\Leftrightarrow AB=\dfrac{3}{4}AC=10.5\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=8.4\left(cm\right)\\BH=6.3\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A có đường cao AH. Biết AC = 10cm; HC = 8cm. Tính độ dài AB; BH.
Hình tự vẽ nha
Xét tam giác ABC vuông tại A có AH là đg cao
=> \(AC^2=BC.HC\)( hệ thức lượng trong tam giác vuông)
⇔\(10^2=BC.8\)
=> BC = 12,5
Ta có BC = HC + BH
T/s 12,5 = 8 + BH
=> BH= 4,5
Xét tam giác ABC vuông tại có
\(AB^2+AC^2=BC^2\)( định lý PYtago)
T/s \(AB^2+10^2=12,5^2\)
⇔ \(AB^2=12,5^2-10^2\)
⇔ \(AB^2=56,25\)
⇔\(AB=7,5\)
Cho tam giác ABC vuông tại A , đường cao AH , phân giác AD . Biết BD = 7,5cm , CD = 10cm . Tính AH , BH , HD .
Cho tam giác ABC vuông tại A , đường cao AH , phân giác AD . Biết BD = 7,5cm , CD = 10cm . Tính AH , BH , HD .
Ta có: BD+CD=BC(D nằm giữa B và C)
nên BC=7,5+10=17,5(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{AB}{AC}=\dfrac{7.5}{10}=\dfrac{3}{4}\)
\(\Leftrightarrow AB=\dfrac{3}{4}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=17.5^2\)
\(\Leftrightarrow AC=14\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{3}{4}\cdot AC=\dfrac{3}{4}\cdot14=10,5\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH\cdot17.5=10.5\cdot14\\BH\cdot17.5=10.5^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}AH=8,4\left(cm\right)\\BH=6,3\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A , đường cao AH , phân giác AD . Biết BD = 7,5cm , CD = 10cm . Tính AH , BH , HD .
\(BC=BD+CD=17,5\left(cm\right)\)
Áp dụng định lý phân giác:
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)
Áp dụng Pitago:
\(AB^2+AC^2=BC^2\Leftrightarrow\left(\dfrac{3}{4}AC\right)^2+AC^2=\left(17,5\right)^2\)
\(\Leftrightarrow AC^2=196\Rightarrow AC=14\)
\(\Rightarrow AB=10,5\left(cm\right)\)
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=8,4\left(cm\right)\)
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=6,3\left(cm\right)\)
\(HD=BD-BH=1,2\left(cm\right)\)
Cho tam giác ABC vuông tại A , đường cao AH . Biết BH = 10cm , CH = 42cm . Tính BC , AH , AB , AC.
\(BC=BH+CH=52\left(cm\right)\)
\(AH=\sqrt{BH.CH}=2\sqrt{105}\) (cm)
\(AB^2=BH.BC\Rightarrow AB=\sqrt{BH.BC}=2\sqrt{130}\left(cm\right)\)
\(AC^2=CH.BC\Rightarrow AC=\sqrt{CH.BC}=2\sqrt{546}\left(cm\right)\)
Ta có: BC=BH+CH(H nằm giữa B và C)
nên BC=10+42=52(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=10\cdot42=420\)
hay \(AH=2\sqrt{105}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=\left(2\sqrt{105}\right)^2+10^2=420+100=520\)
hay \(AB=2\sqrt{130}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=52^2-520=2184\)
hay \(AC=2\sqrt{546}\left(cm\right)\)
Cho tam giác ABC vuông tại A có AC=10cm, AB=8cm. AH là đường cao. Tính cạnh BC, BH, BH, AH
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=164\)
hay \(BC=2\sqrt{41}cm\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{32\sqrt{41}}{41}cm\\CH=\dfrac{50\sqrt{41}}{41}cm\\AH=\dfrac{40\sqrt{41}}{41}cm\end{matrix}\right.\)
Cho tam giác ABC vuông tại A, có AH là đường cao, AB = 10cm, AC = 24cm. Tính BH, HC, AH và diện tích tam giác ABC?
Xét tam giác ABC vuông ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+10^2}=26\left(cm\right)\)
\(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{10^2}{26}\approx4\left(cm\right)\\HC=\dfrac{AC^2}{BC}=\dfrac{24^2}{26}\approx22\left(cm\right)\end{matrix}\right.\)
Xét tam giác ABH vuông tại H áp dung Py-ta-go ta có:
\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{10^2-4^2}=2\sqrt{21}\left(cm\right)\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot2\sqrt{21}\cdot26=26\sqrt{21}\left(cm^2\right)\)
Ta có :
\(BC^2=AB^2+AC^2\left(Pitago\right)\)
\(\Leftrightarrow BC^2=100+576=676\)
\(\Leftrightarrow BC=26\left(cm\right)\)
\(AB^2=BH.BC\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{100}{26}=\dfrac{50}{13}\left(cm\right)\)
\(BC=BH-HC\)
\(\Leftrightarrow HC=BC-BH=26-\dfrac{50}{13}=\dfrac{288}{13}\left(cm\right)\)
\(AH^2=BH.HC=\dfrac{50}{13}.\dfrac{288}{13}=\dfrac{14400}{13^2}\)
\(\Leftrightarrow AH=\dfrac{120}{13}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.10.24=120\left(cm^2\right)\)
Hoặc : \(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.\dfrac{120}{13}.26=120\left(cm^2\right)\)