Chi tam giác ABC vuông tại A với Ab = 6cm ; AC = 8cm .vẽ phân giác với góc B cắt Ac tại M tính độ dài AM
Cho tam giác ABC vuông tại A ,BI là đường phân giác (I thuộc AC ) . Kẻ CH vuông góc với đường thẳng BI (H thuộc BI)
a) Chứng minh tam giác ABI đồng dạng với tam giác HCI
b) chứng minh tam giác BHC đồng dạng với tam giác CHI
c)Cho biết AB=6cm , AC=8cm . Tính độ dài các cạnh AI , IC
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm. Vẽ đường cao AD của tam giác ABC. a) Chứng minh tam giác ABC vuông tại A và tam giác ABD đồng dạng tam giác CAD. b) Trên AB lấy điểm F sao cho AB = 3AF. Từ điểm D, vẽ đường thẳng vuông góc với FD tại D, đường thẳng này cắt AC tại E. Chứng minh: góc AFD = góc CED. c) Tính tỉ số:
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
Xét ΔABD vuông tại D và ΔCAD vuông tại D có
góc DBA=góc DAC
=>ΔABD đồng dạng với ΔCAD
b: góc EAF+góc EDF=180 độ
=>AFDE nội tiếp
=>góc AFD+góc AED=180 độ
=>góc AFD=góc CED
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Cho tam giác ABC vuông góc tại A có AB = 3cm, AC=4cm và tam giác MPQ vuông góc tại M có MP = 6cm, PQ= 10cm. Chứng minh tam giác ABC đồng dạng với tam giác MPQ.
Cho tam giác ABC vuông góc tại A có AB = 3cm, AC=4cm và tam giác MPQ vuông góc tại M có MP = 6cm, PQ= 10cm. Chứng minh tam giác ABC đồng dạng với tam giác MPQ.
Áp dụng định lý Py-ta-go đối với ▲MPQ vuông tại M ta có:
\(MQ^2=PQ^2-MP^2\)
\(\Rightarrow MQ=10^2-6^2=100-36=64\)
\(\Rightarrow MQ=8\left(cm\right)\)
Xét ▲ABC và ▲MPQ ta có :
\(\frac{AB}{MP}=\frac{AC}{MQ}=\frac{1}{2}\left(\frac{3}{6}=\frac{4}{8}\right)\)
<A=<M=90
Do đó hai tam giác đồng dạng
- Đâu cần phiền phức vậy! Có hai góc A và M cùng =90 độ lập tỉ số 2 cặp cạnh đã cho độ dài => 2 tỉ số bằng nhau => Tam giác đồng dạng trường hợp c.g.c .
Bài 1. Chi tam giác ABC vuông tại A phân giác AD, đường cao AH biết CD= 68cm, BD=51cm. Tính BH,HC
Bài 2 . Cho tam giác ABC vuông tại A đường cao AH biết AB=7,5cm, AH=6cm.
a, Tính AC,BC
b, Tính Cos B, Cos C
Bài 1:
\(BC=CD+BD=68+51=119\)
\(AD\)là phân giác \(\widehat{BAC}\)\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay \(\frac{51}{AB}=\frac{68}{AC}\)
\(\Leftrightarrow\)\(\frac{51^2}{AB^2}=\frac{68^2}{AC^2}=\frac{51^2+68^2}{AB^2+AC^2}=\frac{25}{49}\)
suy ra: \(\frac{51^2}{AB^2}=\frac{25}{49}\)\(\Rightarrow\)\(AB=71,4\)
ÁP dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Leftrightarrow\)\(BH=\frac{AB^2}{BC}=\frac{71,4^2}{119}=42,84\)
\(\Rightarrow\)\(CH=BC-BH=119-42,84=76,16\)
Bài 2:
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow\)\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow\)\(BH^2=7,5^2-6^2=20,25\)
\(\Leftrightarrow\)\(BH=4,5\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}=\frac{7,5^2}{4,5}=12,5\)
\(AB.AC=BC.AH\)
\(\Rightarrow\)\(AC=\frac{BC.AH}{AB}=\frac{12,5.6}{7,5}=10\)
b) \(cosB=\frac{AC}{BC}=\frac{10}{12,5}=0.8\)
\(cosC=\frac{AB}{BC}=\frac{7,5}{12,5}=0,6\)
cho tam giác ABC vuông tại A có AB = 6cm ; BC = 10cm trên cạnh BC lấy điểm D sao cho BD = 6cm vẽ đường vuông góc với BC cắt cạnh AC tại M câu a tính AC câu b tính chu vi tam giác ABC câu c chứng minh BM là đường phân giác của tam giác ABC
Cho tam giác abc có AB=6cm;AC=8cm;Bc=10cm. chứng tỏ tam giác ABC vuông tại A,Tia phân giác của góc B cắt AC tại D, kẻ DE vuông góc với BC tại E
a) Ta có:
\(BC^2=AB^2+AC^2\)
\(10^2=6^2+8^2=36+64=100\)
Áp dụng định lí Pytago đảo
⇒ Tam giác ABC vuông tại A
b) 1/ Xét tam giác ABD và tam giác EBD có
^A=^E=90o(gt)
BD: cạnh chung
^B1=^B2(BD phân giác ^B)
⇒ Tam giác ABD= tam giác EBD
2/ Em xem lại đề ha