\(\left(x+y\right)^3-x^3-y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3xy\left(x+y\right)\)
\(\left(x+y\right)^3-x^3-y^3\)
\(=\left[\left(x+y\right)^3-x^3\right]-y^3\)
\(=\left(x+y-x\right)\left[\left(x+y\right)^2+x\left(x+y\right)+x^2\right]-y^3\)
\(=y\left(x^2+2xy+y^2+x^2+xy+x^2\right)-y^3\)
\(=y\left(x^2+2xy+y^2+x^2+xy+x^2-y^2\right)\)
\(=y\left(3x^2+3xy\right)=3xy\left(x+y\right)\)