Đáp án A
Ta có y ' = m 2 + 1 x + m 2 > 0 với ∀ x ∈ T X D . Để hàm số đạt giá trị lớn nhất bằng 1 3 trên 0 ; 2 điều kiện cần và đủ là y 2 = 1 3 ⇔ 2 m − 1 2 + m = 1 3 ⇒ m = 1
Đáp án A
Ta có y ' = m 2 + 1 x + m 2 > 0 với ∀ x ∈ T X D . Để hàm số đạt giá trị lớn nhất bằng 1 3 trên 0 ; 2 điều kiện cần và đủ là y 2 = 1 3 ⇔ 2 m − 1 2 + m = 1 3 ⇒ m = 1
Với giá trị nào của tham số m thì hàm số y = 2 x - 3 x + m 2 đạt giá trị lớn nhất trên đoạn [1;3] bằng 1/4
A.m = ±2
B. m = ±3
C. m = ±1
D. m = ± 3
Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y= x - 1 + 3 - x thì M+ 2 m bằng
A. 2 2 + 1
B. 4
C. 2 + 2
D. 3
Cho hàm số f(x) = |3x4 – 4x3 – 12x2 + m|. Gọi M là giá trị lớn nhất của hàm số trên đoạn [-1; 3] Giá trị nhỏ nhất của M bằng
C. 16
Cho hàm số y = m x + 1 2 x − 1 (m là tham số, m ≠ 2 ). Gọi a, b lần lượt giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên 1 ; 3 . Khi đó có bao nhiêu giá trị của m để a . b = 1 5 .
A. 0
B. 2
C. 1
D. 3
Cho hàm số y = 2 3 x 3 + ( m + 1 ) 2 + ( m 2 + 4 m + 3 ) x đạt cực trị tại x 1 , x 2 . Giá trị lớn nhất của biểu thức A = x 1 x 2 - 2 ( x 1 + x 2 ) bằng
A. 9 2
B. 9 2
C. 1
D. 4
Cho hàm số y = f ( x ) = x - m 2 x + 4 với m là số thực. Tìm giá trị lớn nhất của m để hàm số f(x) có giá trị nhỏ nhất trên [0;1] bằng -1
A. m = 2
B. m = 0
C. m 6
D. m = 3
Cho hàm số y = x 3 + 2 m x 2 + m 2 x - 3 Với giá trị nào của m thì hàm số đạt cực tiểu tại x = 1
A. m = - 1
B. m = - 3
C. m = - 1 hoặc m = - 3
D. không có giá trị nào của m
Để giá trị nhỏ nhất của hàm số y = x + 1 x - m trên khoảng (0;+∞) bằng –3 thì giá trị của tham số m là:
A. m = 11 2
B. m = 19 3
C. m = 5
D. m = 7
Để giá trị nhỏ nhất của hàm số y = x + 1 x - m trên khoảng 0 ; + ∞ bằng -3 thì giá trị của tham số m là:
A. m =7
B. m = 19 3 .
C. m = 11 2 .
D. m =5