(d): y=2mx-2x+3
Điểm A cố định mà (d) luôn đi qua là;
x=0 và y=-2x+3=3
Để d(O;(d)) max thì hình chiếu của (O) lên (d)là A
vecto OA=(0;3)
=>(d) có vtpt là(0;3)
PT (d) được viết lại là;
0(x-0)+3(y-3)=0
=>y=3
=>(2m-2)=0
=>m=1
(d): y=2mx-2x+3
Điểm A cố định mà (d) luôn đi qua là;
x=0 và y=-2x+3=3
Để d(O;(d)) max thì hình chiếu của (O) lên (d)là A
vecto OA=(0;3)
=>(d) có vtpt là(0;3)
PT (d) được viết lại là;
0(x-0)+3(y-3)=0
=>y=3
=>(2m-2)=0
=>m=1
Trong mặt phẳng Oxy,cho đường thẳng `(d): (m-4)x+(m-3)y=1` (m là tham số).Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng `(d)` là lớn nhất.
Cho mặt phẳng Oxy ,cho đường thẳng (d) có phương trình (m-4)x+(m-3)y=1 (m là tham số). Tìm M để khoảng cách từ gốc tọa độ đến đường thẳng (d) là lớn nhất
Cho hàm số y=(2m+1) x+3 (d) (m là tham số,m khác -1/2)
1.Khi m=1,hãy vễ đồ thị hàm số đó trên mặt phẳng tọa độ Oxy và tính khoảng cách từ O đến đường thẳng (d)
2.Đường thẳng (d) cắt đường thẳng y= -3/2x +3(d') tại điểm M.Gọi N và P lần lượt là giao điểm của đường thẳng(d) và(d') với trục hoành Ox.Tìm m để diện tích tam giác OMP bằng 2 lần diện tích tam giác OMN
Trong mặt phẳng tọa độ Oxy cho parabol (P): \(y=\dfrac{1}{2}x^2\) và đường thẳng (d): \(y=2x-m+1\) ( Với m là tham số )
a, Tìm m để đường thẳng (d) đi qua điểm A(-1;3)
b, Tìm m để (d) cắt (P) tại hai điểm phân biệt có tọa độ \(\left(x_1;y_1\right):\left(x_2;y_2\right)\) sao cho \(x_1x_2\left(y_1+y_2\right)+48=0\)
Trên mặt phẳng tọa độ Oxy cho đường thẳng (d):\(\left(y\right)=\left(2m-3\right)x+4m-3\). Gọi H là khoảng cách từ điểm O đến đường thẳng (d). Tìm giá trị lớn nhất của h.
Trong mặt phẳng tọa độ Oxy, xét đường thẳng (dm) xác định bởi phương trình (m - 1)x + ( m+1)y = căn (2(m2 + 1 )) với m là tham số.Tính khoảng cách từ gốc tọa độ O đến đường thẳng (dm).
Cho 2 đường thẳng
(d₁): y = \(\left(2+m\right)x+1\:\:\left(m\ne-2\right)\)
(d₂): y = \(\left(1+2m\right)x+2\:\left(m\ne-\dfrac{1}{2}\right)\)
a) Tìm m để (d₁) và (d₂) cắt nhau.
b) Với m = -1, vẽ (d₁) và (d₂) trên cùng một mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của 2 đường thẳng đó.
c) Tìm khoảng cách lớn nhất từ A(1;3) đến (d₁).
Trong mặt phẳng toạ độ cho đường thẳng (d): y= (m+2)x+2m+3 .
a. Tìm m để (d) đi qua điểm A(2,5) .
b. Chứng minh rằng với mọi giá trị của tham số m thì (d) luôn đi qua một điểm cố định.
c. Tìm m để khoảng cách từ gốc O đến đường thẳng (d) là lớn nhất.
cho hàm số \(y=\left(m-1\right)x+2m-3\)(m là tham số ) có đồ thị là đường thẳng (d) . Tìm m để đường thẳng (d) tiếp xúc với đường tròn tâm O ( O là gốc tọa độ Oxy) bán kính 2 cm ( đơn vị trên 2 trục cm )
Trong mặt phẳng Oxy,đường thẳng (d) có phương trình:(m-4)x+(m-3)y=1(m là tham số) .Khoảng cách từ gốc tọa độ đến đường thẳng (d) là lớn nhất khi giá trị m bằng
A.1 B.\(\dfrac{1}{3}\) C.\(\dfrac{7}{2}\) D.\(\dfrac{5}{2}\)