Bài tập cuối chương 4

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Trên mặt phẳng tọa độ Oxy, vẽ nửa đường tròn tâm O, bán kính r = 2 nằm phía trên trục Ox. Gọi D là hình phẳng giới hạn bởi nửa đường tròn, trục Ox và hai đường thẳng x = −1, x = 1. Tính thể tích khối tròn xoay tạo thành khi quay D quanh trục Ox.

datcoder
29 tháng 10 lúc 23:13

Phương trình đường tròn tâm \(O\), bán kính \(r = 2\) là \({x^2} + {y^2} = {2^2} = 4\).

Do nửa đường tròn nằm phía trên trục \(Ox\), nên ta có \(y \ge 0\). Suy ra phương trình nửa đường tròn là \(y = \sqrt {4 - {x^2}} \).

Hình phẳng \(D\) được giới hạn bởi đồ thị hàm số \(y = \sqrt {4 - {x^2}} \), trục hoành và các đường thẳng \(x =  - 1\), \(x = 1\). Do đó, thể tích khối tròn xoay khi quay \(D\) quanh trục \(Ox\) là

\(V = \pi \int\limits_{ - 1}^1 {{{\left( {\sqrt {4 - {x^2}} } \right)}^2}dx}  = \pi \int\limits_{ - 1}^1 {\left( {4 - {x^2}} \right)dx}  = \pi \left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_{ - 1}^1 = \pi \left( {\frac{{11}}{3} - \frac{{ - 11}}{3}} \right) = \frac{{22\pi }}{3}\).