bài 1 : tính giá trị biểu thức :
a,A=\(\frac{\left(3.4.2^{16}\right)^{^2}}{11.2^{13}.4^{11}-16^9}\)
b, B= \(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}+\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
Bài 2:cho \(\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}\)và 5a - 3b - 4c = 46.Tìm a,b,c?
b,cho \(\frac{a}{c}=\frac{b}{d}\)chứng minh rằng :
\(\frac{3a^6+c^6}{3b^6+d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\)
1. Cho \(\frac{a}{c}=\frac{c}{b}\) Chứng minh \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
2. Tính B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6-8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
Bài 1: Giải phương trình:
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\left(x+\frac{1}{9}\right)\times\left(2x-5\right)< 0\)
c) \(\left(4x-1\right)\times\left(x^2+12\right)\times\left(-x+4\right)>0\)
d) \(\frac{2x+\frac{3x-4}{5}}{15}< \frac{\frac{3-x}{2}+7x}{5}+1-x\)
Bài 2:
a) \(\frac{m-2}{4}+\frac{3m+1}{3}\)có giá trị âm
b)\(\frac{m-4}{6m+9}\)có giá trị dương
c) CMR: \(-x^2+4x-9\le-5\)với mọi x
d) CMR: \(x^2-2x+9\ge8\)với mọi số thực x
Giải các phương trình:
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
c) \(1+\frac{1}{x+2}=\frac{12}{8+x^3}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)
giải phương trình:
a, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\) b, \(\frac{7x}{8}-5\left(x-9\right)=\frac{20x+1,5}{6}\)
Tính A=\(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(11^4+\frac{1}{4}\right)}{\frac{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(12^4+\frac{1}{4}\right)}{ }}\)
Cho Q=\(\frac{12x-15}{x^2-7x+12}-\frac{x+5}{x-4}+\frac{2x-3}{3-x}\). Tập hợp các giá trị nguyên của x để Q nhận giá trị nguyên
cho a,b,c,d là các ố nguyên dương đôi một khác nhau thỏa mản \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{a+d}=2\)
CMR abcd là số chính phương
3 Giải các phương trình
a/ 10 - 4x = 2x - 2
b/\(\frac{5x-2}{3}\)=\(\frac{5-3x}{2}\)
c/3x - 15 = 2x (x - 5)
d/\(\frac{x^2-6}{x}=x+\frac{3}{2}\)