Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jenny123

Tính:

1/2 - 1/4 - 1/8 - 1/16 - .... - 1/1024

(Nhập kết quả dưới dạng p/s tối giản)

l҉o҉n҉g҉ d҉z҉
16 tháng 9 2017 lúc 20:44

Ta có : \(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-.....-\frac{1}{1024}\)

\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\right)\)

Đặt  \(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\)

=> \(2A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{512}\)

=> \(2A-A=\frac{1}{2}-\frac{1}{1024}\)

Thay A vào ta có : \(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)

Le Nhat Phuong
16 tháng 9 2017 lúc 21:01

Jenny123 tham khảo nhé

Đặt tổng trên là A, ta có:

\(A.2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(A.2-A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{512}-"\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\)

\(\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}"\)

\(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}-\frac{1}{128}-\frac{1}{256}-\frac{1}{512}-\frac{1}{1024}\)

\(A=1-\frac{1}{1024}=\frac{1023}{1024}\)

P/s: Bn xem lại đề nha

le thi thu
12 tháng 12 2017 lúc 21:53

1/1024


Các câu hỏi tương tự
Edogawa Conan
Xem chi tiết
Phạm Minh Quân
Xem chi tiết
Trung Nguyễn
Xem chi tiết
Nguyễn Nhất Sinh
Xem chi tiết
Fuck You
Xem chi tiết
Đỗ Văn Thắng
Xem chi tiết
Hoa Thiên Cốt
Xem chi tiết
Bùi Phương Thu
Xem chi tiết
Nguyễn Thanh Trường
Xem chi tiết