\(\frac{1}{12}\)+ \(\frac{1}{20}\)+ \(\frac{1}{42}\)+ .... + \(\frac{1}{132}\)
= \(\frac{1}{3.4}\)+ \(\frac{1}{4.5}\)+ \(\frac{1}{5.6}\)+ ... + \(\frac{1}{11.12}\)
= \(\frac{1}{3}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{5}\)+ ... + \(\frac{1}{11}\)- \(\frac{1}{12}\)
= \(\frac{1}{3}\)- \(\frac{1}{12}\)
= \(\frac{1}{4}\)
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{42}+.....+\frac{1}{132}\)
\(=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+......+\frac{1}{11.12}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{3}-\frac{1}{12}\)
\(=\frac{1}{4}\)