bạn vào câu hỏi tuỷong tự để tìm lời giải chi tiết
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{14.15}+\frac{1}{15.16}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{16}\)
\(=\frac{1}{2}-\frac{1}{16}=\frac{7}{16}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{210}+\frac{1}{240}\)
\(=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{14\times15}+\frac{1}{15\times16}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{16}\)
\(=\frac{1}{2}-\frac{1}{16}\)
\(=\frac{7}{16}\)
=1/2.3+1/3.4+1/4.5+...+1/14.15+15.16
=1/2-1/3+1/3-1/4+...+1/14-1/15+1/15-1/16
=1/2-1/16
=8/16-1/16
=7/16
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{210}+\frac{1}{240}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{14.15}+\frac{1}{15.16}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{16}\)
\(=\frac{1}{2}-\frac{1}{16}\)
\(=\frac{7}{16}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{210}+\frac{1}{240}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{14.15}+\frac{1}{15.16}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{15}-\frac{1}{16}\)
\(=\frac{1}{2}-\frac{1}{16}=\frac{7}{16}\)