đặt A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{91.93}\)
ta có:
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{91.93}\)
=> 2A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{91.93}\)
=> 2A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{93}\)
=> 2A = \(\frac{1}{1}-\frac{1}{93}\)
2A = \(\frac{92}{93}\)
=> A = \(\frac{92}{93}:2\)
A = \(\frac{46}{93}\)
=1-1/3+1/3-1/5+1/5-1/7+.........+1/91-1/93
=>1-1/93=92/92