Đặt 2003=x
Thay vào E ta có : E =[x^2.(x+10) +31.(x+1) -1].[ x.(x+5) +4)]/[(x+1).(x+2).(x+3).(x+4).(x+5)]
Vì x.(x+5) +4 = (x+1).(x+4)
x^2.(x+10) + 31.(x+1) - 1= x^3 + 10 x^2 +31.x +30 = (x+2).(x+3).(x+5)
=> E=1
Vậy E=1
Đặt 2003=x
Thay vào E ta có : E =[x^2.(x+10) +31.(x+1) -1].[ x.(x+5) +4)]/[(x+1).(x+2).(x+3).(x+4).(x+5)]
Vì x.(x+5) +4 = (x+1).(x+4)
x^2.(x+10) + 31.(x+1) - 1= x^3 + 10 x^2 +31.x +30 = (x+2).(x+3).(x+5)
=> E=1
Vậy E=1
Tính: \(M=\frac{\left(2003^2.2013+31.2004-1\right)\left(2003.2008+4\right)}{2004.2005.2006.2007.2008}\) ?
a) Tính giá trị biểu thức: \(A=\frac{\left(2003^2.2013+31.2004-1\right)\left(2003.2008+4\right)}{2004.2005.2006.2007.2008}\)
b) Tồn tại hay không số nguyên n để \(n^2+2006\)là số chính phương
Tìm x biết :\(\frac{1}{\left(x+2000\right)\left(x+2001\right)}+\frac{1}{\left(x+2001\right)\left(x+2002\right)}+...+\frac{1}{\left(x+2003\right)\left(x+2014\right)}=\frac{14}{15}\)
Tính đúng :
\(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(2013^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(2014^4+\frac{1}{4}\right)}\)
tính B=\(\frac{\left(1^4+\frac{1}{4}\right).\left(3^4+\frac{1}{4}\right).....\left(29^4+\frac{1}{4}\right)}{\left(2^{\text{4}}+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)......\left(30^4+\frac{1}{4}\right)}\)
a/Chứng minh rằng \(\frac{2}{\left(2n+1\right)\sqrt{n}+\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b/Áp dụng chứng minh
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{4003\left(\sqrt{2001}+\sqrt{2002}\right)}<\frac{2001}{2003}\)
Cho x = \(\sqrt{\frac{1}{2\sqrt{3}-2}-\frac{3}{2\left(\sqrt{3}+1\right)}}\) . Tính giá trị của biểu thức:
A = \(\frac{4\left(x+1\right)x^{2003}-2x^{2012}+2x+1}{2x^2+3x}\)
a)Tính giá trị của biểu thức : S=\(\frac{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(100^4+\frac{1}{4}\right)}{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)..\left(99^4+\frac{1}{4}\right)}\)
b) Cho x,y là các số thực dương.Tìm GTNN của biểu thức : P=\(\frac{x+y}{\sqrt{x\left(4x+5y\right)}+\sqrt{y\left(4y+5x\right)}}\)
\(x\sqrt[3]{35-x^3}\times\left(x+\sqrt[3]{35-x^3}\right)=30\)
\(CMR:A=\frac{1}{\left(\sqrt{1}+\sqrt{3}\right)^3}+\frac{1}{\left(\sqrt{3}+\sqrt{5}\right)^3}+...+\frac{1}{\left(\sqrt{2003}+\sqrt{2005}\right)^3}< \frac{246}{2007}\)