- Gọi chiều dài và chiều rộng thửa ruộng lần lượt là \(x,y\left(x,y\in N\cdot\right)\)
- Diện tích ban đầu thửa ruộng đó là : xy ( m2 )
Theo bài ra sau khi tăng chiều dài thêm 2m và tăngchiều rộng thêm 3m thì diện tích tăng thêm 100m2 .
Nên ta có phương trình :\(\left(x+2\right)\left(y+3\right)=xy+100\)
\(\Leftrightarrow xy+3x+2y+6=xy+100\)
\(\Leftrightarrow3x+2y=94\left(I\right)\)
Lại có theo bài ra nếu cùng giảm cả chiều dài và chiều rộngđi 2m thì diện tích giảm đi 68m2.
Nên ta có phương trình : \(\left(x-2\right)\left(y-2\right)=xy-68\)
\(\Leftrightarrow xy-2x-2y+4=xy-68\)
\(\Leftrightarrow x+y=36\left(II\right)\)
- Giai hệ phương trình tạo từ ( I ) và ( II ) ta được : \(\left\{{}\begin{matrix}x=22\\y=14\end{matrix}\right.\) ( TM )
Vậy diện tích mảnh ruộng đó là : 308 ( m2 ) .
Gọi chiều dài và chiều rộng của thửa ruộng lần lượt là a(m) và b(m)(Điều kiện: a>0; b>0; \(a\ge b\))
Diện tích ban đầu của thửa ruộng là:
\(ab\left(m^2\right)\)
Vì nếu tăng chiều dài thêm 2m và tăng chiều rộng thêm 3m thì diện tích tăng thêm \(100m^2\) nên ta có phương trình:
\(\left(a+2\right)\left(b+3\right)=ab+100\)
\(\Leftrightarrow ab+3a+2b+6-ab-100=0\)
\(\Leftrightarrow3a+2b-94=0\)
\(\Leftrightarrow3a+2b=94\)(1)
Vì khi cùng giảm cả chiều dài và chiều rộng đi 2m thì diện tích giảm đi \(68m^2\) nên ta có phương trình:
\(\left(a-2\right)\left(b-2\right)=ab-68\)
\(\Leftrightarrow ab-2a-2b+4-ab+68=0\)
\(\Leftrightarrow-2a-2b+72=0\)
\(\Leftrightarrow-2a-2b=-72\)
\(\Leftrightarrow a+b=36\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a+2b=94\\a+b=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+2b=94\\3a+3b=108\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-14\\a+b=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=36-b=36-14=22\\b=14\end{matrix}\right.\)(thỏa ĐK)
Diện tích của thửa ruộng là:
\(S=a\cdot b=14\cdot22=308\left(m^2\right)\)