A=\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{243}+\frac{1}{729}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^5}+\frac{1}{3^6}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^4}+\frac{1}{3^5}\)
Lấy 3A - A ta được : (\(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^4}+\frac{1}{3^5}\) ) - (\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^5}+\frac{1}{3^6}\))
2A = 1 - \(\frac{1}{3^6}\)
=> A = \(\frac{1-\frac{1}{3^6}}{2}=\frac{364}{729}\)