Giải
\(xy\) = \(\dfrac{x}{y}\) (đk y ≠ 0)
\(xy^2\) = \(x\)
\(xy^2\) - \(x\) = 0
\(x.\left(y^2-1\right)\) = 0
\(\left[{}\begin{matrix}x=0\\y^2-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\y=-1\\y=1\end{matrix}\right.\)
nếu \(x=0\) ⇒ y = 0 x y = 0 (loại) (1)
Nếu y = -1 ta có: \(x-1\) = \(x.\left(-1\right)\) = - \(x\)
\(x\) + \(x\) = 1
2\(x\) = 1
\(x\) = \(\dfrac{1}{2}\) (2)
Nếu y = 1 thì \(x+1\) = \(x.1\) ⇒ 1 = 0 (vô lý) (loại) (3)
Từ (1); (2); (3) kết luận nghiệm của phương trình là:
(\(x;y\)) = (\(\dfrac{1}{2}\); -1)