\(2S=6+3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^8}\)
\(2S-S=6-\frac{3}{2^9}=\frac{3069}{512}\)
\(2S=6+3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^8}\)
\(2S-S=6-\frac{3}{2^9}=\frac{3069}{512}\)
Tính nhanh:
\(2\frac{3}{7}+\left(\frac{2}{9}-1\frac{3}{7}\right)-\frac{5}{3}:\frac{3}{4}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+....+\frac{3}{2^9}\)
S=\(\frac{1}{^3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}+\frac{1}{3^9}\)
Bài 1:
a, Cho S=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\) .Chứng minh rằng \(\frac{2}{5}< S< \frac{8}{9}\)
b, Tìm x thuộc z để phân số \(\frac{x^2-5x-1}{x+2}\)có giá trị là số nguyên
c, Chứng minh rằng \(\left(\frac{7}{65}+1\right)\left(\frac{7}{84}+1\right)\left(\frac{7}{105}+1\right)\left(\frac{7}{124}+1\right)...\left(\frac{7}{153+1}\right)\left(\frac{7}{560}+1\right)< 2\)
d, Chứng minh rằng \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\frac{5}{3^5}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Tính S=\(3+\frac{3}{2}+\frac{3}{2^2}+........+\frac{3}{2^9}\)
Tính nhah ---- giúp mik giải nâ các bn thank nhiều nhiều
a)\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}+\frac{1}{3}\)
b) \(\frac{\frac{1}{3}-\frac{1}{5}-\frac{1}{7}}{\frac{2}{3}-0,4-\frac{2}{7}}+\frac{\frac{3}{8}-\frac{3}{16}-\frac{3}{32}+\frac{3}{64}}{\frac{1}{4}-\frac{1}{8}-\frac{1}{16}+\frac{1}{32}}\)
c) \(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
1/ Tính tổng : \(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
2/ Tính: \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(S=\frac{1}{2}:\frac{3}{2}:\frac{4}{3}:\frac{5}{4}:\frac{6}{5}:\frac{7}{6}:\frac{8}{7}:\frac{9}{8}:\frac{10}{9}\)
\(S=\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)