AI ĐỌC ĐƯỢC NÓ LÀM ƠN GIÚP MÌNH VỚI MÌNH ĐANG CẦN RẤT GẤP
CẢM ƠN TRƯỚC NHA
\(n^2+83n+2009\)là số chính phương thì \(4\cdot\left(n^2+83n+2009\right)\)cũng là số chính phương và ta đặt là \(p^2\)p nguyên.
\(p^2=4n^2+2\cdot2n\cdot83+83^2+4\cdot2009-83^2=\left(2n+83\right)^2+1147\)
\(\Leftrightarrow p^2-\left(2n+83\right)^2=1147\)
\(\Leftrightarrow\left(p-\left(2n+83\right)\right)\left(p+\left(2n+83\right)\right)=1147\)(1)
Suy ra \(p+2n+83\)là ước nguyên dương của 1147. Mà U+(1147) = {1;31;37;1147} nên
\(p+2n+83=1147\)
\(p-\left(2n+83\right)=1\)
=> \(2n+83=573\Rightarrow n=245\)
Kết luận, với n=245 thì \(n^2+83n+2009\)là số chính phương 2872.
Mình xin sửa cái câu:
"Suy ra \(p+n+83\)là ước nguyên dương của 1147"
thành:
"Suy ra \(p+n+83\)là ước nguyên dương >83 của 1147"
Nó chặt chẽ hơn.