a) Ta có :
\(2n+7=2n-6+13=2\left(n-3\right)+13\)chia hết cho \(n-3\)\(\Rightarrow\)\(13\)chia hết cho \(n-3\)\(\Rightarrow\)\(\left(n-3\right)\inƯ\left(13\right)\)
Mà \(Ư\left(13\right)=\left\{1;-1;13;-13\right\}\)
Do đó :
\(n-3=1\Rightarrow n=1+3=4\)
\(n-3=-1\Rightarrow n=-1+3=2\)
\(n-3=13\Rightarrow n=13+3=16\)
\(n-3=-13\Rightarrow n=-13+3=-10\)
Vậy \(n\in\left\{4;2;16;-10\right\}\)
b) Ta có :
\(n+11=n-8+19\)chia hết cho \(n-8\)\(\Rightarrow\)\(19\)chia hết cho \(n-8\)\(\Rightarrow\)\(\left(n-8\right)\inƯ\left(19\right)\)
Mà \(Ư\left(19\right)=\left\{1;-1;19;-19\right\}\)
Do đó :
\(n-8=1\Rightarrow n=1+8=9\)
\(n-8=-1\Rightarrow n=-1+8=7\)
\(n-8=19\Rightarrow n=19+8=27\)
\(n-8=-19\Rightarrow n=-19+8=-11\)
Vậy \(n\in\left\{9;7;27;-11\right\}\)