Vì \(x^2 \ge 0\) với mọi `x`
\(=>x^{2}+2021 \ge 2021\) với mọi `x`
Hay \(A \ge 2021\) với mọi `x`
Dấu "`=`" xảy ra `<=>x=0`
do số nguyên bình luôn là dương hoặc 0 nên a nhỏ nhất khi x bình là 0 thì x sẽ là 0
\(A=x^2+2021\)
Với \(x^2\ge0\forall x\in R\)
\(\Rightarrow x^2+2021\ge2021\forall x\in R\)
\(\Rightarrow A\ge2021\forall x\in R\)
\(\Rightarrow\) Giá trị nhỏ nhất của A là 2021
Dấu "=" xảy ra ⇔ \(x^2=0\)
\(\Leftrightarrow x=0\)