Đặt \(n^4+n^3+n^2=a^2\left(a\in N\right)\)
Ta có : \(n^4-2n^3+n^2< a^2< n^4+2n^3+n^2\)
\(\Leftrightarrow\left(n^2-n\right)^2< a^2< \left(n^2+n\right)^2\)\(\Rightarrow n^2-n< a< n^2+n\)
Mặt khác, ta lại có : \(n^2-n< n^2< n^2+n\) \(\Rightarrow a=n^2\Leftrightarrow a^2=n^4\)
\(\Leftrightarrow n^4+n^3+n^2=n^4\Leftrightarrow n^2\left(n+1\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\left(\text{nhận}\right)\\n=-1\left(\text{loại}\right)\end{cases}}\)
Vậy n = 0 thoả mãn đề bài.