\(\frac{6n-1}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để phân số đã cho nhỏ nhất thì \(\frac{5}{3n+2}\) lớn nhất => 3n + 2 nhỏ nhất , n là số tự nhiên nên 3n+ 2 nhỏ nhất khi n = 0
Vậy n = 0 thì ps đã cho nhỏ nhất
\(\frac{6n-1}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để phân số đã cho nhỏ nhất thì \(\frac{5}{3n+2}\) lớn nhất => 3n + 2 nhỏ nhất , n là số tự nhiên nên 3n+ 2 nhỏ nhất khi n = 0
Vậy n = 0 thì ps đã cho nhỏ nhất
tìm n thuộc Z. Để 6n-1 / 3n+2 đạt GTNN
cho p/s A=6n-1/ 3n+2
a) tìm n thuộc Z để A thuộc Z
b tìm n thuộc z để A có GTNN
Cho phân số
A = 6n−1/3n+2
Tìm n thuộc N để A có GTNN
Cho phân số A = \(\frac{6n-1}{3n+2}\)
a. Tìm n thuộc Z để A có giá trị nguyên
b. Tìm n thuộc Z để A có GTNN
Cho ps
A=\(\frac{6n-1}{3n+2}\)
Tìm n thuộc Z để A có GTNN
Cho A = 6n-1/ 3n+2:
a) Tìm n thuộc Z để A có giá trị nguyên.
b) Tìm n thuộc N để A có giá trị nhỏ nhất.
Cho phân số A= 6n-1/3n+2 . Tìm n thuộc N để A có giá trị nhỏ nhất
A=6n-1/3n+2
a)Tìm n thuộc Z để A có giá trị nguyên
b)Tìm n thuộc Z để A có giá trị nhỏ nhất
a=6n-1/3n+2 . tìm n thuộc Z để a có giá trị nguyên