Bài 8: Giải bài toán bằng cách lập phương trình. Luyện tập

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Duy Khánh

Tìm một số có hai chữ số, biết rằng tổng bình phương  của hai chữ số của nó bằng 89 và nếu đổi chỗ hai chữ số của nó thì được một số nhỏ hơn số ban đầu là 27 đơn vị. 

Trương Huy Hoàng
10 tháng 2 2021 lúc 17:03

Gọi chữ số hàng chục của số cần tìm là a; chữ số hàng đơn vị của số cần tìm là b (a, b \(\in\) N; 0 < a,b \(\le\) 9)

Số cần tìm là \(\overline{ab}=10a+b\)

Vì tổng bình phương của hai chữ số của nó bằng 89 nên ta có pt:

a2 + b2 = 89 (1)

Số sau khi đổi chỗ hai chữ số của số cần tìm là: \(\overline{ba}=10b+a\)

Vì nếu đổi chỗ hai chữ số của nó thì được một số nhỏ hơn số ban đầu là 27 đơn vị nên ta có pt:

\(\left(10a+b\right)-\left(10b+a\right)=27\) 

\(\Leftrightarrow\) 9a - 9b = 27

\(\Leftrightarrow\) a - b = 3 (2)

Từ (1) và (2) ta có hpt:

\(\left\{{}\begin{matrix}a^2+b^2=89\\a-b=3\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a^2+b^2=89\\a=3+b\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(3+b\right)^2+b^2=89\\a=3+b\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}9+6b+2b^2=89\\a=3+b\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}b\left(3+b\right)=40\\a=3+b\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=8\\b=5\end{matrix}\right.\) (TM)

Vậy số cần tìm là 85

Chúc bn học tốt!

Nguyễn Lê Phước Thịnh
10 tháng 2 2021 lúc 20:29

Gọi số cần tìm có dạng là \(ab\)(có dấu gạch ngang trên đầu)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a< 10\\0\le a< 10\end{matrix}\right.\))

Vì tổng bình phương hai chữ số bằng 89 nên ta có phương trình:

\(a^2+b^2=89\)(1)

Vì khi đổi chỗ hai chữ số của nó thì được một số nhỏ hơn số ban đầu 27 đơn vị nên ta có phương trình:

\(10b+a+27=10a+b\)

\(\Leftrightarrow10b+a-10a-b=-27\)

\(\Leftrightarrow-9a+9b=-27\)

\(\Leftrightarrow-9\left(a-b\right)=-9\cdot3\)

\(\Leftrightarrow a-b=3\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a^2+b^2=89\\a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(b+3\right)^2+b^2=89\\a=3+b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2+6b+9+b^2=89\\a=3+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b^2+6b-80=0\\a=b+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2+3b-40=0\\a=b+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2+8b-5b-40=0\\a=b+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b\left(b+8\right)-5\left(b+8\right)=0\\a=b+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(b+8\right)\left(b-5\right)=0\\a=b+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}b+8=0\\b-5=0\end{matrix}\right.\\a=b+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}b=-8\left(loại\right)\\b=5\left(nhận\right)\end{matrix}\right.\\a=b+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5+3\\b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\left(nhận\right)\\b=5\left(nhận\right)\end{matrix}\right.\)

Vậy: Số cần tìm là 85


Các câu hỏi tương tự
hehe Đoán xem
Xem chi tiết
Ngọc Duyên
Xem chi tiết
Đặng Thị Huyền Trang
Xem chi tiết
Khánh Duy
Xem chi tiết
9A THCS AN CHÂU LỚP
Xem chi tiết
ánh hằng
Xem chi tiết
Trần văn Hưng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thanh Lê
Xem chi tiết