Tìm số nguyên n thỏa mãn n3+2012n=20142015
Cho x>0,y>0, z>0 thỏa mãn \(x^{2014}+y^{2014}+z^{2014}=3\) . Tính giá trị lớn nhất của biểu thức \(M=x^2+y^2+z^2\)
a)tìm các cặp số nguyên dương x,y thỏa mãn: 2x^2+3y^2-5xy-x+3y-4=0
b) các số x,y,z thỏa mãn điều kiện x^2+y^2+z^2=2014. tìm giá trị nhỏ nhất của M=2xy-yz-xz
Tìm các số x,y thỏa mãn x^17+x^10+17^14= y^2014 + y^2015 +2014^2016
Cho x,y thỏa mãn (x + căn 2014+y^2)(y + căn 2014+x^2)=2014 . tính x^2015 + y^2015
cho góc nhọn a thỏa mãn: sin4a/m + cos4a/n=1/m+n (m,n.0),Chứng minh rằng sin2010a /m+ cos2010b/n =1/(m+n)2014
Cho x,y thỏa mãn (x + căn 2014+y^2)(y + căn 2014+x^2)=2014 . tính x^2015 + y^2015
cho x, y thỏa mãn:
căn(x+2014) + căn(2015-x) + căn(2014-x)=căn(y+2014)+căn(2015-y)+căn(2014-y)
cmr x=y
Cho x,y thỏa mãn:
\(\sqrt{2014+x}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{2014+y}+\sqrt{2015-y}-\sqrt{2014-y}\)
\(CMR:x=y\)