đề như vậy đúng không ạ
\(Q=-\frac{15}{3+\sqrt{6x-x^2-5}}.\)
ta xét \(6x-x^2-5\)
\(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-2\cdot3x+9-4\right)\)
\(=\left[\left(x-3\right)^2-4\right]\)
\(=-\left(x-3\right)^2+4\)
có \(-\left(x-3\right)^2+4\le4\)
\(\Rightarrow\sqrt{-\left(x-3\right)^2+4}\le\sqrt{4}\)
\(\Rightarrow0\le\sqrt{-\left(x-3\right)^2+4}\le2\)
có \(3+\sqrt{6x-x^2-5}\)
\(\Rightarrow3\le3+\sqrt{-\left(x-3\right)^2+4}\le5\)
\(\Rightarrow-5\le-\frac{15}{3+\sqrt{6x-x^2-5}}\le3\)
=> GTNN của Q là -3
=> GTLN của Q là -5
với \(x-3=0;x=3\)